Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html
a: Ta có: \(3\sqrt{2}\cdot5\sqrt{6}\cdot4\sqrt{12}\)
\(=\sqrt{18\cdot25\cdot6\cdot16\cdot12}\)
\(=\sqrt{518400}\)
=720
b: Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)^2+2\sqrt{14}\)
\(=9-2\sqrt{14}+2\sqrt{14}\)
=9
c: Ta có: \(\left(1+\sqrt{5}+\sqrt{6}\right)\left(1+\sqrt{5}-\sqrt{6}\right)\)
\(=6+2\sqrt{5}-6\)
\(=2\sqrt{5}\)
a) \(15\sqrt{\dfrac{4}{3}}-5\sqrt{48}+2\sqrt{12}-6\sqrt{\dfrac{1}{3}}\)
\(=\sqrt{15^2\cdot\dfrac{4}{3}}-5\cdot4\sqrt{3}+2\cdot2\sqrt{3}-\sqrt{6^2\cdot\dfrac{1}{3}}\)
\(=\sqrt{\dfrac{225\cdot4}{3}}-20\sqrt{3}+4\sqrt{3}-\sqrt{\dfrac{36}{3}}\)
\(=\sqrt{75\cdot4}-16\sqrt{3}-\sqrt{12}\)
\(=10\sqrt{3}-16\sqrt{3}-2\sqrt{3}\)
\(=-8\sqrt{3}\)
b) \(\dfrac{15}{\sqrt{6}+1}-\dfrac{3}{\sqrt{7}-\sqrt{2}}-15\sqrt{6}+3\sqrt{7}\)
\(=\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\dfrac{3\left(\sqrt{7}+\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}-15\sqrt{6}+3\sqrt{7}\)
\(=\dfrac{15\left(\sqrt{6}-1\right)}{6-1}-\dfrac{3\sqrt{7}+3\sqrt{2}}{7-2}-15\sqrt{6}+3\sqrt{7}\)
\(=3\left(\sqrt{6}-1\right)-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)
\(=3\sqrt{6}-3-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)
\(=-12\sqrt{6}-3+3\sqrt{7}-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}\)
\(=\dfrac{-60\sqrt{6}-15+15\sqrt{7}-3\sqrt{7}-3\sqrt{2}}{5}\)
\(=\dfrac{-60\sqrt{6}-15+12\sqrt{7}-3\sqrt{2}}{5}\)
1: Ta có: \(\sqrt{7-3\sqrt{5}}+\sqrt{7+3\sqrt{5}}\)
\(=\frac{\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}}{\sqrt{2}}\)
\(=\frac{\sqrt{9-2\cdot3\cdot\sqrt{5}+5}+\sqrt{9+2\cdot3\cdot\sqrt{5}+5}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(3+\sqrt{5}\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|3-\sqrt{5}\right|+\left|3+\sqrt{5}\right|}{\sqrt{2}}\)
\(=\frac{3-\sqrt{5}+3+\sqrt{5}}{\sqrt{2}}\)(Vì \(3>\sqrt{5}>0\))
\(=\frac{6}{\sqrt{2}}=\sqrt{18}=3\sqrt{2}\)
2) Ta có: \(\sqrt{6-\sqrt{35}}+\sqrt{6+\sqrt{35}}\)
\(=\frac{\sqrt{12-2\sqrt{35}}+\sqrt{12+2\sqrt{35}}}{\sqrt{2}}\)
\(=\frac{\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{5}+5}+\sqrt{7+2\cdot\sqrt{7}\cdot\sqrt{5}+5}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{7}+\sqrt{5}\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{7}-\sqrt{5}\right|+\left|\sqrt{7}+\sqrt{5}\right|}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-\sqrt{5}+\sqrt{7}+\sqrt{5}}{\sqrt{2}}\)(Vì \(\sqrt{7}>\sqrt{5}>0\))
\(=\frac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)
6: \(=3\cdot2\sqrt{3}-4\cdot3\sqrt{3}+5\cdot4\sqrt{3}=14\sqrt{3}\)
7: \(=2\sqrt{3}+5\sqrt{3}-4\sqrt{3}=3\sqrt{3}\)
8: \(=2\cdot4\sqrt{2}+4\cdot2\sqrt{2}-5\cdot3\sqrt{2}=\sqrt{2}\)
9: \(=3\cdot2\sqrt{5}-2\cdot3\sqrt{5}+4\sqrt{5}=4\sqrt{5}\)
10: \(=2\cdot2\sqrt{6}-2\cdot3\sqrt{6}+3\sqrt{6}-5\sqrt{6}=-4\sqrt{6}\)
Chứng minh các bất đẳng thức:
a) căn 6 - căn 2 >1
b) căn 5 - căn 3>1/2
c) căn 7 - căn 6 < căn 6 - căn 5
a, 2
b, \(\frac{1}{2}\)
c,\(\sqrt{3}\)
mk k chắc lém nhưng bn cho mk nha mk tl đầu tiên
\(\text{a) }Ta\text{ }có:\text{ }\sqrt{5}-\sqrt{3}=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}\\ =\dfrac{2}{\sqrt{5}+\sqrt{3}}\\ Lại\text{ }có:\text{ }\left(\sqrt{5}+\sqrt{3}\right)^2=5+3+2\sqrt{15}\\ =8+\sqrt{60}< 8+\sqrt{64}=16\\ \Rightarrow\sqrt{5}+\sqrt{3}< 4\\ \Rightarrow\dfrac{2}{\sqrt{5}+\sqrt{3}}>\dfrac{2}{4}\\ \Rightarrow\sqrt{5}-\sqrt{3}>\dfrac{1}{2}\)
\(\text{b) }\sqrt{k+1}-\sqrt{k}=\dfrac{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}{\sqrt{k+1}+\sqrt{k}}\\ =\dfrac{1}{\sqrt{k+1}+\sqrt{k}}\\ \Rightarrow\sqrt{7}-\sqrt{6}=\dfrac{1}{\sqrt{7}+\sqrt{6}}\\ \sqrt{6}-\sqrt{5}=\dfrac{1}{\sqrt{6}+\sqrt{5}}\\ Mà\text{ }\sqrt{7}+\sqrt{6}>\sqrt{5}+\sqrt{6}\\ \Rightarrow\dfrac{1}{\sqrt{7}+\sqrt{6}}< \dfrac{1}{\sqrt{6}+\sqrt{5}}\\\sqrt{7}-\sqrt{6}< \sqrt{6}-\sqrt{5}\)
Vậy................