K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LT
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
30 tháng 4 2017
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\\ =\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(\left(x^2\right)^2-2x^2+1\right)+4}\\ =\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\)
do: \(+\left(x+1\right)^2\ge0\Rightarrow3.\left(x+1\right)^2+9\ge9\Rightarrow\sqrt{3\left(x+1\right)^2+9}\ge\sqrt{9}=3\)(1)\(+\left(x^2-1\right)^2\ge0\Rightarrow5\left(x^2-1\right)^2+4\ge4\Rightarrow\sqrt{5\left(x^2-1\right)^2+4}\ge\sqrt{4}=2\)(2)
từ (1) và(2)\(\Rightarrow\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)
câu b bạn làm tương tự
TD
1
19 tháng 8 2020
Bạn viết rõ đề ra được không . MÌnh không hiểu đề cho lắm
DQ
0
\(\left(\sqrt{2x}-y\right)^2=\left(\sqrt{2x}\right)^2-2\cdot\sqrt{2x}\cdot y+y^2=2x-2\sqrt{2x}\cdot y+y^2\)
\(\left(\sqrt{2x}+\sqrt{8y}\right)^2=\left(\sqrt{2x}\right)^2+2\left(\sqrt{2x}\right)\left(\sqrt{8y}\right)+\left(\sqrt{8y}\right)^2=2x+2\sqrt{16xy}+8y\)
Không chắc nha :)