K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

tick cho mình đi rồi mình trả lời

16 tháng 11 2021

r bn ơi

16 tháng 1 2019

Đáp án D

Phương pháp:

TH1: An và Cường trả lời đúng, Bình trả lời sai.

TH2: Bình và Cường trả lời đúng, An trả lời sai.

Áp dụng quy tắc cộng.

Cách giải:

TH1: An và Cường trả lời đúng, Bình trả lời sai => P1 = 0,9.(1 - 0,7).0,8 = 0,216

TH2: Bình và Cường trả lời đúng, An trả lời sai => P2 = (1 - 0,9).0,7.0,8 = 0,056

Vậy xác suất cô giáo chỉ kiểm tra bài cũ đúng 3 bạn trên là P = P1 + P2 = 0,272

10 tháng 1 2019

Không gian mẫu là số cách gọi ngẫu nhiên 2 nam, 2 nữ từ 46 học sinh.

Suy ra số phần tử của không gian mẫu là .

Gọi A là biến cố 4 học sinh (2 nam, 2 nữ) được gọi lên đều không chuẩn bị bài tập về nhà, trong đó có Bình và Mai . Ta mô tả khả năng thuận lợi cho biến cố A như sau:

  Gọi Bình và Mai lên bảng, có 1 cách.

  Tiếp theo gọi 1 bạn nam từ 6 bạn không làm bài tập về nhà còn lại và 1 bạn nữ từ 3 bạn không làm bài tập về nhà còn lại, có  cách.

 Suy ra số phần tử của biến cố A là .

Vậy xác suất cần tính .

Chon C.

12 tháng 2 2018

Kí hiệu A 1 ,   A 2 ,   A 3  lần lượt là các biến cố: Học sinh được chọn từ khối I trượt Toán, Lí, Hoá: B 1 ,   B 2 ,   B 3  lần lượt là các biến cố : Học sinh được chọn từ khối II trượt Toán, Lí, Hoá. Rõ ràng với mọi (i,j), các biến cố A i  và B i  độc lập.

a) Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Xác suất cần tính là

 

P ( ( A 1   ∪   A 2   ∪   A 2 )   ∩   ( B 1   ∪   B 2   ∪   B 3 ) )     =   P ( A 1   ∪   A 2   ∪   A 2 ) . P ( B 1   ∪   B 2   ∪   B 3 )   =   1 / 2 .   1 / 2   =   1 / 4

 

c) Đặt A   =   A 1   ∪   A 2   ∪   A 3 ,   B   =   B 1   ∪   B 2   ∪   B 3

Giải sách bài tập Toán 11 | Giải sbt Toán 11

d) Cần tính P(A ∪ B)

Ta có

P(A ∪ B) = P(A) + P(B) − P(AB)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

10 tháng 4 2017

Trong mỗi khối, XS hs trượt Toán là 0,25; trượt Lý là 0,15; trượt cả 2 môn là 0,1; trượt đúng 1 môn là 0,2; chỉ trượt Toán là 0,15; chỉ trượt Lý là 0,05; trượt ít nhất 1 môn là 0,3; ko trượt môn nào là 0,7
a) P = 0,25^2 = 0,0625
b) Câu này đề chưa rõ ràng, có nhiều cách hiểu
..1) 2 hs đó đều bị trượt ít nhất 1 môn
..2) 2 hs đó cùng bị trượt trong 1 môn nào đó (còn môn kia không trượt)
..3) 2 hs đó cùng bị trượt trong 1 môn nào đó (còn môn kia có thể trượt hoặc không)
..Nếu hiểu theo cách 1 thì P = 0,3^2 = 0,09
..Nếu hiểu theo cách 2 thì P = 0,15^2 + 0,05^2 = 0,025
..Nếu hiểu theo cách 3 thì P = 0,25^2 + 0,15^2 - 0,1^2 = 0,075

c) P = 0,7^2 = 0,49

d) Trường hợp này là biến cố đối lập với biến cố c
..P = 1 - 0,7^2 = 0,51

22 tháng 8 2020

bạn chép mạng nhe

11 tháng 7 2017

Chọn D

Gọi A là biến cố “Học sinh nhận được 6 điểm”.

Xác suất đánh đúng 1 câu là 1 4 và đánh sai 1 câu là 3 4 .

Để nhận được 6 điểm học sinh đó cần đánh đúng 12 câu và sai 8 câu.

7 tháng 2 2021

Ít nhất 1 câu hình học, nhiều nhất là 3 câu hình học, bởi giới hạn chỉ được bốc 3 câu hỏi

Khong gian mau: \(n\left(\Omega\right)=C^3_{15}\)

TH1: Bốc 1 câu hình học và 2 câu đại số

\(C^1_5.C^2_{10}\)

TH2: Bốc 2 câu hình học và 1 câu đại số

\(C^2_5.C^1_{10}\)

TH3: Bốc 3 câu hình học

\(C^3_5\)

\(\Rightarrow C^1_5.C^2_{10}+C^2_5.C^1_{10}+C^3_5=..\)

\(p\left(A\right)=\dfrac{C^1_5.C^2_{10}+C^2_5.C^1_{10}+C^3_5}{C^3_{15}}=...\)

7 tháng 2 2021

Ω: "Chọn 3 câu hỏi từ 15 câu."

⇒ n(Ω) = \(C^3_{15}=455\)

A: "Chọn được ít nhất 1 câu hỏi Hình học."

⇒ \(\overline{A}\): "Không chọn được câu Hình học nào."

\(\Rightarrow n\left(\overline{A}\right)=C^3_{10}=120\)

\(\Rightarrow P\left(\overline{A}\right)=\dfrac{120}{455}=\dfrac{24}{91}\)

\(\Rightarrow P\left(A\right)=1-P\left(\overline{A}\right)=\dfrac{67}{91}\)

Bạn tham khảo nhé!

 

3 tháng 1 2019

Đáp án A

Cách gọi ngẫu nhiên 2 học sinh lên bảng:  C 40 2

Cách gọi 2 học sinh tên Anh lên bảng:  C 4 2

⇒ p = C 4 2 C 40 2 = 1 130