K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 3 2022

Gọi thời gian làm 1 mình xong công việc của người thứ nhất là x giờ (x>0)

Thời gian làm 1 mình xong công việc của người 2 là y giờ (y>0)

Trong 1h người thứ nhất làm 1 mình được \(\dfrac{1}{x}\) phần công việc, người 2 làm 1 mình được \(\dfrac{1}{y}\) phần công việc

Do 2 người cùng làm trong 18h thì xong nên:

\(18\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\)

Người thứ nhất làm 4h được: \(\dfrac{4}{x}\) phần công việc

Người thứ 2 làm trong 7h được: \(\dfrac{7}{y}\) phần công việc

Do... trong 7h được 1/3 công việc nên: \(\dfrac{4}{x}+\dfrac{7}{y}=\dfrac{1}{3}\)

Ta được hệ: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\\\dfrac{4}{x}+\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{54}\\\dfrac{1}{y}=\dfrac{1}{27}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=54\\y=27\end{matrix}\right.\)

a: \(=\dfrac{\sqrt{3}\left(x\sqrt{2}+y\sqrt{5}\right)}{2\left(x\sqrt{2}+y\sqrt{5}\right)}=\dfrac{\sqrt{3}}{2}\)

b: \(=\dfrac{a+\sqrt{a}-a-2}{\sqrt{a}+1}:\dfrac{a-\sqrt{a}+\sqrt{a}-4}{a-1}\)

\(=\dfrac{\left(\sqrt{a}-2\right)}{\sqrt{a}+1}\cdot\dfrac{a-1}{a-4}=\dfrac{\sqrt{a}-1}{\sqrt{a}+2}\)

a:

ΔOBC cân tại O

mà OI là trung tuyến

nên OI vuông góc BC

góc CMO+góc CIO=180 độ

=>CIOM nội tiếp

Bài 14:

a)

Sửa đề: \(AE\cdot AB=AD\cdot AC\)

Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔADB\(\sim\)ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

hay \(AE\cdot AB=AD\cdot AC\)(đpcm)

b) Ta có: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADB vuông tại D có 

\(\cos\widehat{A}=\dfrac{AD}{AB}\)

Xét ΔAED và ΔACB có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔAED∼ΔACB(c-g-c)

Suy ra: \(\dfrac{AD}{AB}=\dfrac{ED}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AD}{AB}\cdot BC=DE\)

\(\Leftrightarrow DE=BC\cdot\cos\widehat{A}\)(đpcm)

c) Ta có: \(DE=BC\cdot\cos\widehat{A}\)(cmt)

nên \(DE=BC\cdot\cos60^0=\dfrac{1}{2}BC\)(1)

Ta có: ΔEBC vuông tại E(gt)

mà EM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(EM=\dfrac{1}{2}BC\)(2)

Ta có: ΔDBC vuông tại D(gt)

mà DM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(DM=\dfrac{1}{2}BC\)(3)

Từ (1), (2) và (3) suy ra ME=MD=DE

hay ΔMDE đều(đpcm)

1 tháng 7 2021

Dạ em cảm ơn ạ!

a: Khi x=2 thì (1) sẽ là:

4-2(m+2)+m+1=0

=>m+5-2m-4=0

=>1-m=0

=>m=1

x1+x2=m+1=3

=>x2=3-2=1

b: Δ=(m+2)^2-4(m+1)

=m^2+4m+4-4m-4=m^2>=0

=>Phương trình luôn có hai nghiệm

P=(x1+x2)^2-4x1x1+3x1x2

=(x1+x2)^2-x1x2

=(m+2)^2-m-1

=m^2+4m+4-m-1

=m^2+3m+3

=(m+3/2)^2+3/4>=3/4

Dấu = xảy ra khi m=-3/2

2:

a: =(1+căn 3)^2-5

=4+2căn 3-5

=2căn 3-1

b: \(=\sqrt{\dfrac{125}{7}\cdot\dfrac{35}{81}}=\sqrt{\dfrac{625}{81}}=\dfrac{25}{9}\)

c: \(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)-\sqrt{6}+\sqrt{2}\)

=2-căn 6+căn 2

3:

a: \(=\dfrac{2\sqrt{3}+3\sqrt{3}-\sqrt{3}}{\sqrt{3}}=2+3-1=5\)

b: \(=\dfrac{6\sqrt{2}+7\sqrt{2}-5\sqrt{2}}{\sqrt{2}}=13-5=8\)

c: \(=\dfrac{12-10+8}{2}=5\)

d: \(=\sqrt{\dfrac{1}{5}:5}-\sqrt{\dfrac{9}{5}:5}+\sqrt{5:5}\)

=1/5-3/5+1

=3/5