
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Đặt \(ab=x;\)\(bc=y;\)\(ca=z\)
Khi đó: \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
<=> \(x^3+y^3+z^3=3xyz\)
<=> \(x^3+y^3+z^3-3xyz=0\)
<=> \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
Nếu: \(x+y+z=0\)thì: \(ab+bc+ca=0\)
\(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)\)
\(=\frac{\left(a+b\right)\left(b+c\right)}{bc}+\frac{c}{a}+1=\frac{ab+ac+bc+b^2}{bc}+\frac{c}{a}+1\)
\(=\frac{b}{c}+\frac{c}{a}+1=\frac{ab+c^2+ac}{ac}=\frac{c^2-bc}{ac}=\frac{c-b}{a}\)
Nếu: \(x^2+y^2+z^2-xy-yz-zx=0\)<=> \(x=y=z\)
<=> \(ab=bc=ca\)<=> \(a=b=c\)
\(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)=2.2+2=6\)
p/s: trg hợp 1 mk lm đc đến có z thôi, bn tham khảo

\(\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)\left(2abc+\Sigma a^2\left(b+c\right)\right)=\Sigma\frac{a\left(b+c\right)^2+\left(a^2+bc\right)\left(b+c\right)}{\left(b+c\right)^2}=\Sigma a+\Sigma\frac{a^2+bc}{b+c}\)
Mặt khác ta có :
\(\left(\Sigma\frac{a^2+bc}{b+c}\right)\left(\Sigma a\right)=\Sigma\frac{a^3+abc}{b+c}+\Sigma\left(a^2+bc\right)\) ( nhân vào xong tách )
\(=\Sigma\frac{a^3+abc}{b+c}-\Sigma a^2+\Sigma\left(2a^2+bc\right)=\Sigma\frac{a\left(a-b\right)\left(a-c\right)}{b+c}+\Sigma\left(2a^2+bc\right)\) ( * )
Theo BĐT Vornicu Schur chứng minh được ( * ) không âm.
do đó : \(\Sigma\frac{a^2+bc}{b+c}\ge\frac{\Sigma\left(2a^2+bc\right)}{\Sigma a}\)
Theo đề bài , cần chứng minh : \(\left(\Sigma ab\right)\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)
Kết hợp với dòng đầu tiên t cần c/m :
\(\left(\Sigma ab\right)\left(\Sigma a+\frac{\Sigma\left(2a^2+bc\right)}{\Sigma a}\right)\ge\frac{9}{4}\left(2abc+\Sigma a^2\left(b+c\right)\right)\)
Quy đồng lên, ta được :
\(\Sigma a^3\left(b+c\right)\ge2\Sigma\left(ab\right)^2\Leftrightarrow\Sigma ab\left(a-b\right)^2\ge0\)
\(\Rightarrow\)đpcm

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
\(\Rightarrow\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}\Rightarrow}\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\Rightarrow x:y:z=a:b:c\)

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Ta có
\(\hept{\begin{cases}x+y-xy=55\\x^2+y^2=325\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x+y\right)-2xy=110\\\left(x+y\right)^2-2xy=325\end{cases}}\)
Lấy dưới trừ trên vế theo vế ta được
(x + y)2 - 2(x + y) = 215
\(\Leftrightarrow\orbr{\begin{cases}x+y=1+6\sqrt{6}\\x+y=1-6\sqrt{6}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}xy=6\sqrt{6}-54\\xy=-6\sqrt{6}-54\end{cases}}\)
Ta lại có
Ta lại có
x3 - y3 = (x - y)(x2 + xy + y2) =
\(\sqrt{\left(x+y\right)^2-4xy}\left(x^2+xy+y^2\right)\)
Giờ chỉ việc thế số vô là có đáp án nhé

Gọi thời gian đi từ A -> B là x ( giờ ) ( DK x > 1/3 )
Vì thời gian về ít hơn thời gian đi là 20p => Thời gian đi từ B về A là x - 1/3 ( giờ )
Vận tốc đi từ A-> B là 9km
Vận tốc đi về lớn hơn vận tốc cũ là 3km => Vận tốc lúc đi về là 12km
Vì quãng đường lúc về dài hơn quãng đường cũ 6km
=> Ta có pt : 9x + 6 = 12(x-1/3)
Giải pt ta được x = 10/3
Độ dài quãng đường AB là (10/3 - 1/3).12= 36km
Gọi độ dài quãng đường AB là x ( km ; x > 0 )
Thời gian người đó đi từ A đến B = x/9 ( giờ )
Khi đi từ B về A người đó chọn đường khác dài hơn 6km và đi với vận tốc lớn hơn 3km/h
=> Thời gian người đó đi từ B về A = (x+6)/12 ( giờ )
Nên thời gian về ít hơn thời gian đi 20 phút = 1/3 giờ
=> Ta có phương trình : x/9 - (x+6)/12 = 1/3
<=> x/9 - x/12 - 1/2 = 1/3
<=> x(1/9 - 1/12) = 5/6
<=> x.1/36 = 5/6
<=> x = 30 ( tm )
Vậy độ dài quãng đường AB là 30km

a)Ta có : \(P=\frac{x^2}{x-1}< 1\)
\(\Leftrightarrow\frac{x^2}{x-1}-1< 0\)
\(\Leftrightarrow\frac{x^2-x+1}{x-1}< 0\)
Ta lại có : \(x^2-x+1=\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{3}{4}\)\(=\left(x-\frac{1}{2}\right)+\frac{3}{4}>0\forall x\)
\(\Rightarrow P< 1\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)
Vậy \(\hept{\begin{cases}x< 1\\x\ne0\end{cases}}\)thì \(P< 1\)
b) Đề có sai không ạ ? Nếu \(x\ge1\)thì có thể ra kết quả