Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: \(tan\alpha=5\Rightarrow cot\alpha=\frac{1}{5}\) . Đề: \(\frac{sin\alpha}{sin^3\alpha+cos^3\alpha}=\frac{\frac{1}{sin^2\alpha}}{1+\frac{cos^3\alpha}{sin^3\alpha}}=\frac{1+cot^2\alpha}{1+cot^3\alpha}=\frac{1+\left(\frac{1}{5}\right)^2}{1+\left(\frac{1}{5}\right)^3}=\frac{65}{63}\)
b/ Ta có vế trái \(=\frac{sin^2x+cos^2x+cos^2x-sin^2x+\left(sinx+sin3x\right)}{1+2sinx}=\frac{2cos^2x+2.sin2x.cosx}{1+2sinx}=\frac{2cos^2x+4.sinx.cos^2x}{1+2sinx}=\frac{2cos^2x.\left(1+2sinx\right)}{1+2sinx}=2cos^2x\) ( = vế phải)
Giải PT hở b?
ĐK : \(\)\(\left\{{}\begin{matrix}x\ge0\\1-x\ge0\\x\left(1-x\right)\ge0\end{matrix}\right.\Rightarrow}0\le x\le1\)
(0=<x=<1)
đặt \(\sqrt{x}=a;\sqrt{1-x}=b\left(a,b\ge0\right)\\ \Rightarrow\left\{{}\begin{matrix}1+\dfrac{2}{3}ab=a+b\\a^2+b^2=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b-\dfrac{2}{3}ab=1\\\left(a+b\right)^2-2ab=1\end{matrix}\right.\\ \left(ab=P\ge0;a+b=S\ge0\right)\\ \Rightarrow\left\{{}\begin{matrix}S-\dfrac{2}{3}P=1\\S^2-2P=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}S=1+\dfrac{2}{3}P\\1+\dfrac{4}{3}P+\dfrac{4}{9}P^2-2P=1\end{matrix}\right.\Rightarrow}}\\ P=\left[{}\begin{matrix}\dfrac{3}{2}\Rightarrow S=2\left(TM\right)\Rightarrow a,b\in\varnothing\\0\Rightarrow S=1\left(TM\right)\Rightarrow\left[{}\begin{matrix}a=1b=0\left(TM\right)\Rightarrow x=1\left(TM\right)\\a=0;b=1\left(TM\right)\Rightarrow x=0\left(TM\right)\end{matrix}\right.\end{matrix}\right.\)
vậy tập nghiệm của PT là:
x=1 hoặc x=0
hic mik giải 1 hồi mak bị lỗi r, nhg chủ yeus đặt căn x vs căn 1-x lak a vs b, sau đó tính tổng vs tích = hệ PT r tìm dc th
\(A=cos\frac{\pi}{5}+cos\frac{2\pi}{5}+cos\frac{3\pi}{5}+cos\frac{4\pi}{5}+cos\pi+cos\left(2\pi-\frac{4\pi}{5}\right)+...+cos\left(2\pi-\frac{\pi}{5}\right)\)
\(A=2\left(cos\frac{\pi}{5}+cos\frac{2\pi}{5}+cos\frac{3\pi}{5}+cos\frac{4\pi}{5}\right)-1\)
\(=2\left(cos\frac{\pi}{5}+cos\frac{2\pi}{5}+cos\left(\pi-\frac{2\pi}{5}\right)+cos\left(\pi-\frac{\pi}{5}\right)\right)-1\)
\(=2\left(cos\frac{\pi}{5}+cos\frac{2\pi}{5}-cos\frac{2\pi}{5}-cos\frac{\pi}{5}\right)-1\)
\(=-1\)
\(A=cos\left(\pi+\frac{\pi}{2}-a\right)-sin\left(\pi+\frac{\pi}{2}-a\right)+cos\left(a+\frac{\pi}{2}-4\pi\right)-sin\left(a+\frac{\pi}{2}-4\pi\right)\)
\(=-cos\left(\frac{\pi}{2}-a\right)+sin\left(\frac{\pi}{2}-a\right)+cos\left(a+\frac{\pi}{2}\right)-sin\left(a+\frac{\pi}{2}\right)\)
\(=-sina+cosa-sina-cosa=-2sina\)
Lời giải:
Ta có:
\(\tan a+\cot a=m\)
\(\tan a\cot a=1\)
Do đó, theo định lý Viete đảo, \(\tan a, \cot a\) chính là hai nghiệm của PT:
\(x^2-mx+1=0\), ta gọi luôn hai nghiệm là \(x_1,x_2\)
\(\Rightarrow (\tan a-\cot a)^2=(x_1-x_2)^2=(x_1+x_2)^2-4x_1x_2=m^2-4\)
\(\Rightarrow \tan a-\cot a=\pm \sqrt{m^2-4}\)
Đáp án A
a: \(\overrightarrow{x}=\overrightarrow{a}+\overrightarrow{b}\)
nên \(\overrightarrow{x}=\left(1+0;-2+3\right)\)
hay \(\overrightarrow{x}=\left(1;1\right)\)
b: \(\overrightarrow{u}=3\cdot\overrightarrow{a}-2\overrightarrow{b}\)
nên \(\overrightarrow{u}=\left(3\cdot1-2\cdot0;-2\cdot3-2\cdot3\right)\)
hay \(\overrightarrow{u}=\left(3;-12\right)\)