Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) 3 2/5 - 1/2
= 17/5 - 1/2
= 34/10 - 5/10
= 29/10
b) 4/5 + 1/5 × 3/4
= 4/5 + 3/20
= 16/20 + 3/20
= 19/20
c) 3 1/2 × 1 1/7
= 7/2 × 8/7
= 4
d) 4 1/6 : 2 1/3
= 25/6 : 7/3
= 25/14
Bài 2
a) 3 × 1/2 + 1/4 × 1/3
= 3/2 + 1/12
= 18/12 + 1/12
= 19/12
b) 1 4/5 - 2/3 : 2 1/3
= 9/5 - 2/3 : 7/3
= 9/5 - 2/7
= 63/35 - 10/35
= 53/35
a)\(\dfrac{2}{3}.\dfrac{4}{5}+\dfrac{1}{3}.\dfrac{4}{5}=\left(\dfrac{2}{3}+\dfrac{1}{3}\right).\dfrac{4}{5}=1.\dfrac{4}{5}=\dfrac{4}{5}\)
b)\(\dfrac{2}{3}.\dfrac{4}{5}-\dfrac{1}{3}.\dfrac{4}{5}=\left(\dfrac{2}{3}-\dfrac{1}{3}\right).\dfrac{4}{5}=\dfrac{1}{3}.\dfrac{4}{5}=\dfrac{4}{15}\)
a) \(\dfrac{2}{3}\times\dfrac{4}{5}+\dfrac{1}{3}\times\dfrac{4}{5}=\dfrac{4}{5}\times\left(\dfrac{2}{3}+\dfrac{1}{3}\right)=\dfrac{4}{5}\times1=\dfrac{4}{5}\)
b) \(\dfrac{2}{3}\times\dfrac{4}{5}-\dfrac{1}{3}\times\dfrac{4}{5}=\dfrac{4}{5}\times\left(\dfrac{2}{3}-\dfrac{1}{3}\right)=\dfrac{4}{5}\times\dfrac{1}{3}=\dfrac{4}{15}\)
c) \(\dfrac{1}{2}:\dfrac{3}{4}+\dfrac{1}{6}:\dfrac{3}{4}=\dfrac{1}{2}\times\dfrac{4}{3}+\dfrac{1}{6}\times\dfrac{4}{3}=\dfrac{4}{3}\times\left(\dfrac{1}{2}+\dfrac{1}{6}\right)=\dfrac{4}{3}\times\dfrac{2}{3}=\dfrac{8}{9}\)
d) \(\dfrac{1}{2}:\dfrac{3}{4}-\dfrac{1}{6}:\dfrac{3}{4}=\dfrac{1}{2}\times\dfrac{4}{3}-\dfrac{1}{6}\times\dfrac{4}{3}=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=\dfrac{4}{3}\times\dfrac{1}{3}=\dfrac{4}{9}\)
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+4+...+2018}\right)\)
\(A=\frac{2}{1+2}\cdot\frac{2+3}{1+2+3}\cdot\frac{2+3+4}{1+2+3+4}\cdot...\cdot\frac{2+3+4+5+...+2018}{1+2+3+4+5+...+2018}\)
Đến chỗ này đố ai tính được ?!!?!
gạch các số của tử số và các số của mẫu số giống nhau
ví dụ như bạn nói:
\(\dfrac{2+3+4+5+...+2018}{1+2+3+4+5+...+2018} =1\)
=>3x(1-1/6)=3/4
=>3x=3/4:5/6=3/4*6/5=18/20=9/10
=>x=3/10
Đề là \(3x\left(\dfrac{1}{1}\times\dfrac{1}{2}+\dfrac{1}{2}\times\dfrac{1}{3}+\dfrac{1}{3}\times\dfrac{1}{4}+\dfrac{1}{4}\times\dfrac{1}{5}+\dfrac{1}{5}\times\dfrac{1}{6}\right)=\dfrac{3}{4}?\)
`3x (1/1 \times 1/2 + 1/2 \times 1/3 + 1/3 \times 1/4 + 1/4 \times 1/5 + 1/5 \times 1/6) = 3/4`
\(3x\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}\right)=\dfrac{3}{4}\)
\(3x\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)=\dfrac{3}{4}\)
\(3x\left(1-\dfrac{1}{6}\right)=\dfrac{3}{4}\)
\(3x\times\dfrac{5}{6}=\dfrac{3}{4}\)
`3x=3/4 \div 5/6`
`3x = 9/10`
`x = 9/10 \div 3`
`x = 3/10.`
`@` `\text {Ans}`
`\downarrow`
`a,`
\(\dfrac{3}{2}\times\dfrac{4}{5}-x=\dfrac{2}{3}\)
\(\dfrac{6}{5}-x=\dfrac{2}{3}\)
\(x=\dfrac{6}{5}-\dfrac{2}{3}\)
\(x=\dfrac{8}{15}\)
Vậy, `x = \dfrac{8}{15}`
`b,`
\(x\times3\dfrac{1}{3}=3\dfrac{1}{3}\div4\dfrac{1}{4}\)
\(x\times3\dfrac{1}{3}=\dfrac{40}{51}\)
\(x=\dfrac{40}{51}\div3\dfrac{1}{3}\)
\(x=\dfrac{4}{17}\)
Vậy, `x=`\(\dfrac{4}{17}\)
`c,`
\(5\dfrac{2}{3}\div x=3\dfrac{2}{3}-2\dfrac{1}{2}\)
\(\dfrac{17}{3}\div x=\dfrac{7}{6}\)
\(x=\dfrac{17}{3}\div\dfrac{7}{6}\)
\(x=\dfrac{34}{7}\)
Vậy, `x=`\(\dfrac{34}{7}\)
a,\(\dfrac{3}{2}.\dfrac{4}{5}-x=\dfrac{2}{3}\)
\(\dfrac{4}{5}-x=\dfrac{2}{3}:\dfrac{3}{2}\)
\(\dfrac{4}{5}-x=\dfrac{4}{9}\)
\(x=\dfrac{4}{5}-\dfrac{4}{9}\)
\(x=\dfrac{16}{45}\)
\(a)\) \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
\(2S=3+\frac{1}{3^7}\)
\(2S=\frac{3^8+1}{3^7}\)
\(S=\frac{3^8+1}{3^7}.\frac{1}{2}\)
\(S=\frac{3^8+1}{2.3^7}\)
Vậy \(S=\frac{3^8+1}{2.3^7}\)
Chúc bạn học tốt ~
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\\ =1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+...+\left(\dfrac{1}{x}-\dfrac{1}{x}\right)-\dfrac{1}{x+1}\\ =1-\dfrac{1}{x+1}\\ =\dfrac{x+1}{x+1}-\dfrac{1}{x+1}\\ =\dfrac{x}{x+1}\)