Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Số hạng tổng quát của biểu thức x - 2 x 2 21 , x ≠ 0 khi khai triển theo công thức nhị thức Newton là
Số hạng không chứa x trong khai triển nhị thức Newton x - 2 x 2 21 , x ≠ 0 là với k thỏa mãn
21-3k = 0 => k = 7
Vậy số hạng không chứa x trong khai triển nhị thức Newton x - 2 x 2 21 , x ≠ 0 là
\(\left(2x-3y\right)^{10}\)
\(=\left(2x\right)^{10}-C^1_{10}\cdot\left(2x\right)^9\cdot3y+C^2_{10}\cdot\left(2x\right)^8\cdot\left(3y\right)^2+...+\left(3y\right)^{10}\)
\(=1024x^{10}-1536x^9y+...+59049y^{10}\)
♦ |a| > 1: phương trình (1) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn sinα = a.
Khi đó phương trình (1) có các nghiệm là
x = α + k2π, k ∈ Z
và x = π-α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và sinα = a thì ta viết α = arcsin a.
Khi đó các nghiệm của phương trình (1) là
x = arcsina + k2π, k ∈ Z
và x = π - arcsina + k2π, k ∈ Z.