Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


2x = 43 : 25
2x = (22)3 : 25
2x = 26 : 25
2x = 2
=> x = 1

Giải:
A = 3\(^0\) + 3\(^1\) + 3\(^2\) + ... + 3\(\)\(^{2021}\)
Xét dãy số: 0; 1; 2;...; 2021
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Số số hạng của dãy số trên là: (2021 - 0) : 1 + 1 = 2022
A có 2022 hạng tử. Vì 2022 : 3 = 674
Vậy nhóm ba hạng tử liên tiếp của A vào nhau ta được:
A = (3\(^0\) + 3\(^1\) + 3\(^2\)) + (3\(^3\) + 3\(^4\) + 3\(^5\)) +...+ (3\(^{2019}\) + 3\(^{2020}\)+ 3\(^{2021}\))
A = (1+ 3 + 9)+ 3\(^3\).(1 + 3 + 9) + ... + 3\(^{2019}\) .(\(1+3+9\))
A = (1 + 3 +9).(1 + 3\(^3\) + ... + 3\(^{2019}\))
A = (4 + 9).(1 + 3\(^3\) + ... + 3\(^{2019}\))
A = 13.(1 + 3\(^3\) + ... + 3\(^{2019}\)) ⋮ 13
Vậy chứng minh A chia hết cho 13 là điều không thể.

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

Đề ghi sai rồi em
\(D=6+6^1+6^2+6^3+\cdots+6^{120}\) ko chia hết cho 7 và 43
Mà \(D=6^1+6^2+6^3+\cdots+6^{120}\) mới đúng
Em ghi thừa số 6 ở đầu thì phải
a)
\(5^6:5^4+3.3^2+8^0\)
\(=5^2+3^3+1\)
\(=25+27+1\)
\(=53\)
b)
\(3^{21}:\left(3^{15}.20+3^{15}.7\right)\)
\(=3^{21}:\left\lbrack3^{15}.\left(20+7\right)\right\rbrack\)
\(=3^{21}:\left(3^{15}.27\right)\)
\(=3^{21}:\left(3^{15}.3^3\right)\)
\(=3^{21}:3^{18}\)
\(=3^3\)
\(=27\)
c)
\(4^2.3^2-15.3+2000^0\)
\(=12^2-45+1\)
\(=144+1-45\)
\(=145-45\)
\(=100\)
d)
\(3.5^2+2.4^3-1^{2025}\)
\(=3.25+2.64-1\)
\(=75+128-1\)
\(=203-1\)
\(=202\)
*Chúc bạn học tốt nhé!*
tôi viết thiếu
bài 1: tính