Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\text{ĐK: }x\ge\frac{1}{2}\)
\(pt\Leftrightarrow\left(x^2+1\right)\left(x-\sqrt{2x-1}\right)+\)\(\left(x-\sqrt[3]{2x^2-x}\right)=0\)
\(\Leftrightarrow\left(x^2+1\right).\frac{x^2-\left(2x-1\right)}{x+\sqrt{2x-1}}+\frac{x^3-\left(2x^2-x\right)}{x^2+Ax+A^2}=0\text{ }\left(A=\sqrt[3]{2x^2-x}\right)\)
\(\Leftrightarrow\left(x-1\right)^2\left[\frac{x^2+1}{x+\sqrt{2x-1}}+\frac{2x}{x^2+A^2+\left(x+A\right)^2}\right]=0\)
\(\Leftrightarrow x=1\text{ }\left(do\text{ }....................................................>0\right)\)
a, Với x >= 0 ; x khác 4
\(=\frac{x-3\sqrt{x}+2-\left(x+4\sqrt{x}+3\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-3\sqrt{x}-3-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-7\sqrt{x}-6-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-\sqrt{x}-6}{\sqrt{x}-2}\)
b, \(Q+1>0\Leftrightarrow\frac{-\sqrt{x}-6+\sqrt{x}-2}{\sqrt{x}-2}>0\Leftrightarrow\frac{-8}{\sqrt{x}-2}>0\)
\(\Rightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\Rightarrow0\le x< 4\)
c, \(\frac{-\left(\sqrt{x}+6\right)}{\sqrt{x}-2}=\frac{-\left(\sqrt{x}-2+8\right)}{\sqrt{x}-2}=-1-\frac{8}{\sqrt{x}-2}\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\sqrt{x}-2\) | -1 | 1 | -2 | 2 | -4 | 4 | -8 | 8 |
x | 1 | 9 | 0 | 16 | loại | 36 | loại | 100 |
\(Taco:\)
\(x^2\ge0\forall x\Rightarrow2x^2\ge0\)
\(\left(+\right)x>0\Rightarrow2x^2\ge2\Rightarrow2x^2+x-1\ge2\left(loại\right)\)
\(\left(+\right)x< 0\Rightarrow2x^2+x-1\ge0\left(loại\right)\)
\(Vậy:x=0.Taco:2x^2+x-1=-1< 0\left(thoaman\right)\)
\(2x^2+x-1< 0\)
<=> \(\left(x+1\right)\left(2x-1\right)< 0\)
TH1: \(\hept{\begin{cases}x+1>0\\2x-1>0\end{cases}}\)<=> \(\hept{\begin{cases}x>-1\\x>\frac{1}{2}\end{cases}}\) <=> \(x>\frac{1}{2}\)
TH2: \(\hept{\begin{cases}x+1< 0\\2x-1< 0\end{cases}}\) <=> \(\hept{\begin{cases}x< -1\\x< \frac{1}{2}\end{cases}}\) <=> \(x< -1\)
Vay....