K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

A B C M

a) ta có: \(AB^2+AC^2=24^2+32^2=40^2=BC^2\)

=> theo Pitago đảo thì tam giác ABC vuông tại A

b) Ta có: MC=AC-AM=32-7=25

\(\Delta ABM\)vuông tại A có: \(AM^2+AB^2=MB^2\)=> MB=\(\sqrt{AM^2+AB^2}=\sqrt{7^2+24^2}=25\)

Do đó: MB=MC => \(\Delta MBC\)cân tại M

=> \(\widehat{MBC}=\widehat{MCB}\)

Mặt khác \(\widehat{AMB}\)là góc ngoài \(\Delta MBC\)nên: \(\widehat{AMB}\)=\(\widehat{MBC}+\widehat{MCB}=2\widehat{MCB}\)(ĐPCM)