Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c1: giải :
Gọi số tự nhiên cần tìm là ab ( a,b thuộc N , 1< a < 9 ; 0< b <9 ) tỉ số giữa ab và a + b là k.
Ta có : \(k=\frac{\overline{ab}}{a+b}=\frac{10a+b}{a+b}\le\frac{10\left(a+b\right)}{a+b}=10\)
\(k=10\Leftrightarrow b=10b\Leftrightarrow b=0\)
Vậy k lớn nhất bằng 10 khi b = 0 ; a thuộc { 1;2;...;9 }
Các số phải tìm là a0 với a là chữ số khác 0.
c2 : giải :
Gọi số tự nhiên cần tìm là ab ( a,b thuộc N , 1< a < 9 ; 0< b <9 ) tỉ số giữa ab và a + b là k.
ta có :
\(k=\frac{\overline{ab}}{a+b}=\frac{10a+b}{a+b}\)
a, Nếu b = 0 thì \(k=\frac{10a}{a}=10\)
b, Nếu \(b\ne0\) thì a + b > a + 1 và 10a + b < 10 ( a + 1 )
Khi đó ta có \(k=\frac{10a+b}{a+b}< \frac{10\left(a+1\right)}{a+1}=10\)
Vậy k lớn nhất bằng 10 khi b = 0 ; 1 < a < 9
Các số phải tìm là 10;20;30 ,..;90.
\(A=\frac{7}{3\times13}+\frac{7}{13\times23}+...+\frac{7}{53\times63}\)
\(A=\frac{7}{10}.\left[\left(\frac{1}{3}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{23}\right)+....+\left(\frac{1}{53}-\frac{1}{63}\right)\right]\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+....+\frac{1}{53}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\frac{20}{63}\)
\(A=\frac{2}{9}\)
a: Input: a,b,c
Output: a+b+c
b: Bước 1: Nhập a,b,c
Bước 2: Xuất a+b+c
Bước 3: kết thúc
44027 là đáp án 10000000000000000000000000000% chắc chắn , rồi mình nói cách giải