K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

111,1.000.Đây là cách viết số ở hệ nhị phân của chiếc máy tính,cách viết mà chỉ dùng 2 số:0 và 1.Chúng ta đã quen thuộc vs cách viết hệ nhị phân dùng vs 1,2,3,4,5,6 và 1,10,11,100,101,110.Vì vậy phía sau sẽ là cách viết hệ nhị phân của 7 và 8,

#Châu's ngốc

11 tháng 9 2019

1,10,11,100,101,110,111,1000

#Hok_tốt

18 tháng 8 2019

Áp dụng bđt bu-nhi-a cho VT ta có:
\(\left(\sqrt{x^2+x-1}\right)^2+\left(\sqrt{-x^2+x+1}\right)^2\ge\frac{\left(\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}\right)^2}{2}\)
\(\Leftrightarrow\)\(x^2+x-1-x^2+x+1\ge\frac{VT^2}{2}\)
=>VT^2\(\le\)4x
=>VT\(\le\)\(2\sqrt{x}\)\(\le\)x+1
Lại có:VP=x^2-x+2\(\ge\)x+1
Mà VT=VP => VT=VT=x+1
Dấu "=" xảy ra <=>x=1

18 tháng 8 2019

xin lỗi, mình nhầm

30 tháng 8 2015

willi phạm chuyện tương lai cứ để tương lai, bây giờ ta cứ sống với thực tại đi

24 tháng 10 2016

2 an vao x2 nhe

á đù em chưa học anh ơi !

25 tháng 7 2020

\(x=\sqrt{5+\sqrt{13+\sqrt{5}+\sqrt{13+..............}}}\)

\(\Rightarrow x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+.......}}}\)

\(\Rightarrow x^2-5=\sqrt{13+\sqrt{5+\sqrt{13+..........}}}\)

\(\Rightarrow x^2-5=\sqrt{13+x}\)

\(\Rightarrow x^4-10x^2+25-13-x=0\)

\(\Rightarrow x^4-10x^2-x+12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2-x-4\right)=0\)

Hình như trong ngoặc có 2 nghiệm dạng lượng giác :v xài lượng giác hóa thử bạn nhé :) ko thì Cardano :))))))

22 tháng 9 2016

Nhận xét x > 0

Ta có : \(x^2=5+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}\)

\(\Leftrightarrow x^2-5=\sqrt{13+\sqrt{5+\sqrt{13+....}}}\)

\(\Leftrightarrow\left(x^2-5\right)^2=13+\sqrt{5+\sqrt{13+...}}\)

\(\Leftrightarrow\left(x^2-5\right)^2-13=x\)

\(\Leftrightarrow x^4-10x^2-x+12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2-x-4\right)=0\)

Vì pt \(x^3+3x^2-x-4=0\) luôn có nghiệm \(x< 2\) mà \(x>\sqrt{5}>\sqrt{4}=2\)

Vậy x = 3

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Giải pt chứa nhiều dấu trị tuyệt đối thì cần xét các khoảng giá trị.

Để xét các khoảng giá trị, ta căn cứ vào xét các khoảng mà tại đó dấu trị tuyệt đối có thể phá.

Ví dụ: Ta biết $|x-a|=x-a$ nếu $x\geq a$ và $a-x$ nếu $x< a$

Do đó, khi gặp phải pt:

$|x-1|+|x+1|=3x-5$ chả hạn. Ta thấy:

$|x-1|=x-1$ nếu $x\geq 1$ và $1-x$ nếu $x< 1$

$|x+1|=x+1$ nếu $x\geq -1$ và $-x-1$ nếu $x< -1$

Như vậy, kết hợp cả 2 điều trên thì ta xét các khoảng sau:

TH1: $x\geq 1$

TH2: $-1\leq x< 1$

TH3: $x< -1$

31 tháng 7 2021

Em cảm ơn chị nhiều ạ!!