Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(A=\left(2x-y\right)^2=\left(12-2\right)^2=100\)
b: \(=\left(x-3\right)^3=100^3=1000000\)
c: \(=\left(x-y\right)^2-9z^2\)
\(=\left(x-y-3z\right)\left(x-y+3z\right)\)
\(=\left(6+4-90\right)\left(6+4+90\right)=-80\cdot100=-8000\)
=(xy(8x+4+5y))/2xy -3x^2
=(8x+4+5y)/2 +3x^2
=(8x+4+5y)/2 + 6x^2 /2
=(8x+4+5y-6x^2)/2
a) \(=\left(x-2y\right)\left(x^2+5x\right)\)
b) \(=\left(x-1\right)\left(x^2+2x+1\right)=\left(x-1\right)\left(x+1\right)^2\)
c) \(=\left(x^2+1-2x\right)\left(x^2+1+2x\right)\)
\(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)^2\)
d) \(=3\left(x+3\right)-\left(x-3\right)\left(x+3\right)\)
\(=\left(x+3\right)\left(3-x+3\right)\)
\(=\left(x+3\right)\left(6-x\right)\)
e) \(=\left(x^2-\frac{1}{3}x\right)\left(x^2+\frac{1}{3}x\right)\)
f) \(=2x\left(x-y\right)-16\left(x-y\right)\)
\(=2\left(x-y\right)\left(x-8\right)\)
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1
\(a,y-x^2y+2xy^2-y^3=y(1-x^2+2xy-y^2) =y[1-(x^2-2xy+y^2)]=y[1-(x-y)^2] =y(1-x+y)(1+x-y) =y(x+y-1)(x-y+1) \)
\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)
\(=2x^3+16x^2-5x\)
\(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)
\(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)
a) 3x2 +9x - 30
= 3(x2 + 3x -10) = 3[(x2 -2x)+(5x-10)]
= 3(x-2)(x+5)
b) x2 -9x + 18 = (x2 - 3x) - (6x-18)
= (x-3)(x-6)
c) x2 -7x +12 = (x2 -3x)-(4x-12)
= (x-3)(x-4)
d) x2 + 4xy -21y2 = (x2 -3xy)+(7xy - 21y2)
= (x-3y)(x+7y)
e) 5x2 + 6xy +y2
= (5x2 + 5xy)+(xy+y2)
= (x+y)(5x+y)
f) x2 +2xy-15y2 = (x2 - 3xy)+(5xy-15y2)
= (x-3y)(x+5y)
g) x2 -7xy+10y2 = (x2 - 2xy)-(5xy-10y2)
= (x-2y)(x-5y)
h) 4x4 +1 = [(2x2)2 + 4x2 + 1 ] - 4x2
= (2x2 +1)2 -(2x)2
= (2x2 + 1-2x)(2x2 +1+2x)
i) x4 + 324 = [x4 + 36x2 + 182] - 36x2
= (x2 + 18)2 - (6x)2
= (x2 -6x +18)(x2 +6x+18)
3x2+9x-30
=3(x2+3x-10)
=3(x2+5x-2x-10)
=3[(x2+5x)-(2x+10)]
=3[x(x+5)+2(x+5)]
=3(x+5)(x+2)
a) \(2x^2y^2-\frac{4}{3}x^2y+2xy\)
\(=xy\left(2xy-\frac{4}{3}x+2\right)\)
b) 2xy2.(x + 5y) - 4xy(5y + x)
= (5y + x)(2xy2 - 4xy)
= 2xy(5y + x)(y - 2)
c) 25 - 4x2 - y2 + 4xy
= 25 - (4x2 - 4xy + y2)
= 52 - (2x + y)2
= (5 - 2x - y)(5 + 2x + y)
d) x2 + 4x - 2xy - 4y +y2
= (x2 - 2xy + y2) + (4x - 4y)
= (x - y)2 + 4(x - y)
= (x - y)(x - y + 4)
e) 12y3 - 3x2y + 12xy - 12y
= 3y(4y2 - x2 + 4x - 4)
= 3y[4y2 - (x - 2)2]
= 3y(2y - x + 2)(2y + x - 2)
f) 64x4 + y4
= (8x2)2 + 16x2y2 + y4 - 16x2y2
= (8x2 + y2)2 - (4xy)2
= (8x2 + y2 - 4xy)(8x2 + y2 + 4xy)
a) \(2x^2y^2-\frac{4}{3}x^2y+2xy\)
b) \(2xy^2\left(x+5y\right)-4xy\left(5y+x\right)\)
\(=\left(x+5y\right)\left(2xy^2-4xy\right)\)
\(=2\left(x+5y\right)\left(xy^2-2xy\right)\)
c) \(25-4x^2-y^2+4xy\)
\(=25-\left(4x^2+y^2-4xy\right)\)
\(=5^2-\left[\left(2x\right)^2-2.2x.y+y^2\right]\)
\(=5^2-\left(2x-y\right)^2\)
\(=\left(5-2x+y\right)\left(5+2x-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y\right)+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(12y^3-3x^2y+12xy-12y\)
f) \(64x^4+y^4\)
\(=\left(8x^2\right)^2+16x^2y^2+\left(y^2\right)^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2+4xy\right)\left(8x^2+y^2-4xy\right)\)
\(\left(9x^3y^2+5x^2y-4xy\right):\left(2xy^2\right)\\ =9x^3y^2:2xy^2+5x^2y:2xy^2-4xy:2xy^2\\ =\dfrac{9}{2}x^2+\dfrac{5x}{2y}-\dfrac{2}{y}\)