K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2022

x=4

6 tháng 2 2022

 

Với x\(\ge1\)\(x-1-\sqrt{x-1}=0< =>x-1=\sqrt{x-1}< =>\left(x-1\right)^2=x-1< =>\left(x-1\right)^2-\left(x-1\right)=0< =>\left(x-1\right)\left(x-1-1\right)=0< =>\left(x-1\right)\left(x-2\right)=0\)\(< =>\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=1\left(TM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

13 tháng 10 2017

\(12345\approx12300\)

tk anh nha ^^

13 tháng 10 2017

12300 nha , e ms hc lp 6 thoy hà !!!!!!!!!!! Avatar của cj là ak mak cute zậy

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:
a. Ta thấy: $AB\perp BC, CD\perp BC$

$\Rightarrow AB\parallel CD$

$BC\perp CD; DE\perp CD$

$\Rightarrow BC\parallel DE$

b.$AB\perp BC, BC\parallel DE\Rightarrow AB\perp DE$

Mà $DE\perp EF$

$\Rightarrow AB\parallel EF$

c.

Do $AB\parallel CD$ nên: 

$\widehat{AIC}+\widehat{IAB}=180^0$ (2 góc trong cùng phía)

$\Rightarrow \widehat{AIC}=180^0-\widehat{IAB}=180^0-50^0=130^0$

9 tháng 2 2022

e hc tới pytago r đk?

9 tháng 2 2022

bài này ko cần pytago cx đc:

Ta có:

CB=CD

=> FB<CD ( F nằm trên đường thẳng CB)(1)

theo đề suy ra được : tam giác EFD nằm trong tam giác EBD

<=>FD<CB ( vì FD là cạnh nằm trong tam giác và tiếp với đường cao tam giác ngoài)(2)

Từ (1) và (2) suy ra : CD+CB>FD+FB( đpcm)

13 tháng 8 2018

trong tam giac ABC co I la giao diem cua 2 duong cao AD va CE nen I la truc tam cua tam giac ABC ma BI di qua I nen BI vuong goc voi AC

14 tháng 8 2018

thanks bạn nhiều

Bài 4:

a: \(4x=3y\)

=>\(\dfrac{x}{3}=\dfrac{y}{4}=k\)

=>x=3k; y=4k

\(\left(x-y\right)^2+\left(x+y\right)^2=50\)

=>\(\left(3k-4k\right)^2+\left(3k+4k\right)^2=50\)

=>\(\left(-k\right)^2+\left(7k\right)^2=50\)

=>\(50k^2=50\)

=>\(k^2=1\)

TH1: k=1

=>\(x=3\cdot1=3;y=4\cdot1=4\)

TH2: k=-1

=>\(x=3\cdot\left(-1\right)=-3;y=4\cdot\left(-1\right)=-4\)

b: 3x=2y

=>\(\dfrac{x}{2}=\dfrac{y}{3}=k\)

=>x=2k; y=3k

\(\left(x+y\right)^3-\left(x-y\right)^3=126\)

=>\(\left(2k+3k\right)^3-\left(2k-3k\right)^3=126\)

=>\(\left(5k\right)^3-\left(-k\right)^3=126\)

=>\(126k^3=126\)

=>\(k^3=1\)

=>k=1

=>\(x=2\cdot1=2;y=3\cdot1=3\)

bài 3:

a: \(\dfrac{x}{2}=\dfrac{y}{5}\)

=>\(\dfrac{x}{6}=\dfrac{y}{15}\left(1\right)\)

\(\dfrac{y}{3}=\dfrac{z}{2}\)

=>\(\dfrac{y}{15}=\dfrac{z}{10}\left(2\right)\)

Từ (1),(2) suy ra \(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)

mà 2x+3y-4z=34

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{2x+3y-4z}{2\cdot6+3\cdot15-4\cdot10}=\dfrac{34}{12+45-40}=2\)

=>\(x=2\cdot6=12;y=2\cdot15=30;z=2\cdot10=20\)

b: 2x=3y

=>\(\dfrac{x}{3}=\dfrac{y}{2}\)

=>\(\dfrac{x}{21}=\dfrac{y}{14}\left(3\right)\)

5y=7z

=>\(\dfrac{y}{7}=\dfrac{z}{5}\)

=>\(\dfrac{y}{14}=\dfrac{z}{10}\left(4\right)\)

Từ (3),(4) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

mà 3x-7y+5z=30

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot10}=\dfrac{30}{63-98+50}=\dfrac{30}{113-98}=2\)

=>\(x=2\cdot21=42;y=2\cdot14=28;z=2\cdot10=20\)

Bài 2:

a: Xét ΔABD có AD<AB+BD(BĐT tam giác)

b: Xét ΔACD có AD<AC+CD(BĐT tam giác)

ta có: AD<AB+BD

AD<AC+CD

Do đó: AD+AD<AB+BD+AC+CD

=>2AD<AB+AC+BC

c: \(2AD< AB+AC+BC\)

=>\(AD< \dfrac{1}{2}\left(AB+AC+BC\right)\)

=>\(AD< \dfrac{1}{2}\cdot C_{ABC}\)

Bài 11:

a: ΔMDN vuông tại D

=>MN là cạnh huyền

=>MN là cạnh lớn nhất trong ΔMDN

=>MN>MD

b: Ta có: ΔMEN vuông tại E

=>MN là cạnh huyền của ΔMEN

=>MN là cạnh lớn nhất trong ΔMEN

=>MN>NE

mà MN>MD

nên MN+MN>MD+NE

=>2MN>MD+NE