Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kiến thức: một số chính phương là số chia hết cho 4 hoặc chia 4 dư 1
Dấu hiệu chia hết cho 4: lấy hai chữ số cuối cùng nếu chia hết cho 4 thì số đó chia hết cho 4
Bài giải
a) Vì hai chữ số tận cùng của số A chia hết cho 4 nên A là số chính phương.
b) Vì 40 chia hết cho 4 nên 40101 chia hết cho 4
Suy ra số B là số chính phương
c) Ta có: 1000! + 3 = C
C = 1.2.3.4. ... .1000 + 3
C = (...00) + 3
C = (...03)
Vì số C chia 4 dư 3
Nên số C không phải là số chính phương.
Vậy...
a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9
Ta có :
02 = 0
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8
b) Vì 1262 có chữ số tận cùng là 6
=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )
Ta có 10012 có chữ số tận cùng là 1
=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )
Ta có 112 và 113 đều có chữ số tận cùng là 1
=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )
Ta có 1010 có chữ số tận cùng là 0
=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )
Ta có 5151 có chữ số tận cùng là 1
=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )
A)Vì tích của các bình phương luôn luôn có chữ số tận cùng là 0;1;;4;5;6;9 nên số chính phương có chữ số tận cùng là 0;1;4;5;6;9.
B)Cả 2 Tổng hiệu trên không phải là số chính phương.
a) Vì các tích của các bình phương luôn luôn có chữ số tận cùng là 0;1;4;5;6;9 nên số chính phương có tận cùng là các chữ số 0;1;4;5;6;9
b) Cả hai tổng hiệu trên ko phải là số chính phương
a) A = 3 + 32 + 33 + ... + 320
Do các lũy thừa của 3 từ 32 trở đi đều chia hết cho 9 => 32; 33; ...; 320 đều chia hết cho 9
=> 32 + 33 + ... + 320 chia hết cho 9
Mà 3 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9, không là số chính phương
Câu b tương tự
Ta thấy: \(A⋮3\) (Vì mọi hạng tử của A đều chia hết cho 3)
\(A⋮3^2\) vì tất cả hạng tử của A đêu chia hết cho 9 trừ số 3.
A chia hết cho 3 mà không chia hết cho 32 nên A không là số chính phương