Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề: Viết dãy các số tự nhiên từ 1 đến 101 thành một số A
a) A có là hợp số hay không ?
b) A có là số chính phương hay không ?
c) A có thể có 35 ước hay không ?
Trả lời:
a. Tổng từ 1 đến 101:
101(101+1) : 2 = 5151 (Chia hết cho 3).
=> A chia hết cho 3
=> A là hợp số
b. Vì tổng từ 1 đến 100 chia hết cho nhưng ko chia hết cho 9
=> A ko phải là số chính phương.
c. A ko phải là số chính phương nên số lượng của A ko thể là số lẻ.
Để A chia hết cho 35 thì A phải chia hết cho 5 và 7
Mà A ko chia hết cho 5
=> A ko chia hết cho 35 ( vì A ko chia hết cho 5 )
a) Tính tổng các chữ số của A ta thấy:
1+2+3 chia hết cho 3
4+5+6 chia hết cho 3
...
97+98+99 chia hết cho 3
100 + 101 = 201 chia hết cho 3
A có tổng các chữ số chia hết cho 3 nên A chia hết cho 3 ⇒ A là hợp số.
b) Vẫn tính tổng của A, nhưng theo cách:
1+2+3+...+9 chia hết cho 9
11+12+13+...+19 chia hết cho 9
...
91+92+93+...+99 chia hết cho 9
10+20+30+...+90 chia hết cho 9
100+101 không chia hết cho 9
Nên A không chia hết cho 9.
Do A chia hết cho 3 nên A viết được dưới dạng: A = 3B. Và B không chia hết cho 3 vì A không chia hết cho 9.
⇒ A không phải là 1 số chính phương.
Ta có A=2004^2015=(...0) (nhớ có gạch ngang trên đầu nhé)
mà số chính phương có tận cùng là các số 0 1 4 5 6 9
=>A=2004^2015 là số chính phương
a) A = 2004000 => tổng các chữ số của A là 2 + 0 + 0 + 4 + 0 + 0 + 0 = 6 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9, không là số chính phương
b) B = 20012001 là lũy thừa mũ lẻ, không là số chính phương
a) A = 2004000 => tổng các chữ số của A là 2 + 0 + 0 + 4 + 0 + 0 + 0 = 6 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9, không là số chính phương
b) B = 20012001 là lũy thừa mũ lẻ, không là số chính phương
a)Vì số tự nhiên có các chữ số tận cùng laf0;1;2;3;....;9.
Mà số chính phương bằng bình phương của các số tự nhiên
Số chính phương có các chữ số tận cùng là 0;1;4;5;9;6
b)không phải là số chính phương
a) A = 3 + 32 + 33 + ... + 320
Do các lũy thừa của 3 từ 32 trở đi đều chia hết cho 9 => 32; 33; ...; 320 đều chia hết cho 9
=> 32 + 33 + ... + 320 chia hết cho 9
Mà 3 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9, không là số chính phương
Câu b tương tự