K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

Do 4a>b <=> 4a-b>0 (*)

Ta có: 4a2+b2=5ab <=> 4a2+b2-5ab=0

<=> 4a2-4ab-ab+b2=0 <=> 4a(a-b)-b(a-b)=0 <=> (a-b)(4a-b)=0

mà 4a-b>0

=> a-b=0 <=> a=b (**)

Từ (*) và (**) suy ra: a,b>0

=> 2a>a ( do a>0)

mà a=b => 2a>b

mà b>0 => 2a>b>0

Vậy 2a>b>0 khi 4a2+b2=5ab và 4a>b

20 tháng 6 2018

a   \(2a>b;2a>0\Rightarrow2a+2a>b+0\Rightarrow4a>b\)

b   \(4a^2+b^2=5ab\Rightarrow4a^2+b^2-5ab=0\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\Rightarrow\left(4a-b\right)\left(a-b\right)=0\Rightarrow\hept{\begin{cases}4a-b=0\Rightarrow4a=b\\a-b=0\Rightarrow a=b\end{cases}}\)

20 tháng 6 2018

c  \(20=4\cdot5>11\)mà \(2\cdot5=10>11\)đâu 

sai đề r

27 tháng 4 2017

4a2+b2=5ab

<=> 4a2-5ab+b2=0

<=>(4a2-4ab)-(ab-b2)=0

<=>(a-b)(4a-b)=0

<=>a=b hoặc 4a=b

*)TH1: a=b thay vào A ta có

\(A=\dfrac{a^2}{4a^2-a^2}=\dfrac{1}{3}\)

*)TH2: 4a=b thay vào A ta có:

\(A=\dfrac{4a^2}{4a^2-\left(4a\right)^2}=\dfrac{4a^2}{4a^2-16a^2}=-\dfrac{1}{3}\)

10 tháng 11 2015

1/3 còn cách giải chờ mình 1 chút

10 tháng 11 2015

Ta có: \(4a^2+b^2-5ab=0\Leftrightarrow4a^2-4ab+b^2-ab=0\Leftrightarrow4a\left(a-b\right)+b\left(b-a\right)=0\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)

nên \(a=b\) hoặc \(4a=b\)

Vì \(2a>b>0\Rightarrow\frac{2a}{b}>1\), ta lấy \(a=b\)

Thay \(a=b\) vào phân thức \(\frac{ab}{4a^2-4b^2}\), ta được:

\(A=\frac{1}{3}\)

18 tháng 3 2018

ta có: \(4a^2+b^2=5ab< =>4a^2-5ab+b^2=0< =>4a^2-4ab-ab+b^2=0< =>4a\left(a-b\right)-b\left(a-b\right)=0< =>\left(a-b\right)\left(4a-b\right)=0\)

do 2a>b>0=>4a>b>0=> 4a-b khác 0

=> a-b=0<=>a=b

P=\(\dfrac{ab}{4a^2-b^2}=\dfrac{ab}{\left(2a-b\right)\left(2a+b\right)}=\dfrac{ab}{\left(2a-a\right)\left(2a+a\right)}=\dfrac{a^2}{3a^2}=\dfrac{1}{3}\)

vậy............

chúc bạn hcoj tốt ^^

26 tháng 5 2016

ta có\(4a^2+b^2=5ab\)

\(=4a^2+b ^2-4ab-ab=0\)

\(=\left(2a-b\right)^2-ab=0\)

\(=\left(2a-b\right)^2=ab\)

thay (2a-b)2 = ab vào P ta được

\(P=\frac{\left(2a-b\right)^2}{\left(2a-b\right)\left(2a+b\right)}=\frac{2a-b}{2a+b}\)

29 tháng 11 2016

\(4a^2+b^2=5ab\)

\(4a^2-5ab+b^2=0\)

\(4a^2-4ab-ab+b^2=0\)

\(4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\left(a-b\right)\left(4a-b\right)=0\)

\(\left[\begin{array}{nghiempt}a-b=0\\4a-b=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}a=b\\4a=b\end{array}\right.\)

\(2a>b>0\)

\(\Rightarrow a=b\)

Thay a = b vào M, ta có:

\(M=\frac{b\times b}{4b^2-b^2}\)

\(=\frac{b^2}{3b^2}\)

\(=\frac{1}{3}\)

Vậy . . .

16 tháng 7 2018

Theo đề bài ta có :

\(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-4ab-ab+b^2=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)(1)

Vì \(2a>b>0\)

\(\Rightarrow4a-b\ne0\)

Từ điều (1)

\(\Rightarrow a-b=0\)

\(\Leftrightarrow a=b\)

Thay a=b vào P ta có :

\(P=\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{1}{3}\)( vì \(a\ne0\))

Vậy phân thức P có số trị là 1/3 .