\(\dfrac{a}{3b}=\dfrac{b}{3c}=\dfrac{c}{3d}=\dfrac{d}{3a}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

Theo tính chất của dãy tỉ số bằng nhau :

\(\dfrac{a}{3b}=\dfrac{b}{3c}=\dfrac{c}{3d}=\dfrac{d}{3a}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)

Vì a + b + c + d khác 0 . Ta có :

\(a=\dfrac{1}{3}.3b=b\)(1)

\(b=\dfrac{1}{3}.3c=c\)(2)

\(c=\dfrac{1}{3}.3d=d\)(3)

\(d=\dfrac{1}{3}.3a=a\)(4)

Từ (1);(2);(3) và (4)

=> a = b = c = d

4 tháng 7 2017

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{a}{3b}=\dfrac{b}{3c}=\dfrac{c}{3d}=\dfrac{d}{3a}=\dfrac{a+b+c+d}{3\left(b+c+d+a\right)}=\dfrac{1}{3}\)

\(\dfrac{a}{3b}=\dfrac{1}{3}\Rightarrow a=b\) __( 1 )__

\(\dfrac{b}{3c}=\dfrac{1}{3}\Rightarrow b=c\) __( 2 )__

\(\dfrac{c}{3d}=\dfrac{1}{3}\Rightarrow c=d\) __( 3 )__

\(\dfrac{d}{3a}=\dfrac{1}{3}\Rightarrow d=a\) __ ( 4 )__

Từ ( 1 ), ( 2 ), ( 3 ), ( 4 ) suy ra: \(a=b=c=d\)

18 tháng 7 2017

- viết lại cái đề

* Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3.\left(a+b+c+d\right)}=\frac{1}{3}\)

* Vậy \(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\left(1\right)\)

\(\frac{b}{3c}=\frac{1}{3}\Rightarrow3b=3c\Rightarrow b=c\left(2\right)\)

\(\frac{c}{3d}=\frac{1}{3}\Rightarrow3c=3d\Rightarrow c=d\left(3\right)\)

\(\frac{d}{3a}=\frac{1}{3}\Rightarrow3d=3a\Rightarrow d=a\left(4\right)\)

từ (1),(2),(3),(4) ta có:

a=b,b=c,c=d,d=a

=> a=b=c=d

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3a+3b+3c+3d}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)

\(\Rightarrow\frac{a}{3b}=\frac{a}{3a}\Rightarrow3b=3a\Rightarrow a=b\)

\(\frac{b}{3c}=\frac{b}{3b}\Rightarrow3b=3c\Rightarrow b=c\)

\(\frac{c}{3d}=\frac{c}{3c}\Rightarrow3c=3d\Rightarrow c=d\)

=>a=b=c=d

=>đpcm

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

2 tháng 12 2015

Áp dụng tính chất dãy tỉ số bằng nhau \(\Rightarrow\frac{a}{3\cdot b}=\frac{b}{3\cdot c}=\frac{c}{3\cdot d}=\frac{d}{3\cdot a}=\frac{a+b+c+d}{3\cdot b+3\cdot c+3\cdot d+3\cdot a}=\frac{a+b+c+d}{3\cdot\left(a+b+c+d\right)}=\frac{1}{3}\)

\(\Rightarrow a=\frac{1}{3}\cdot3\cdot b;b=\frac{1}{3}\cdot3\cdot c;c=\frac{1}{3}\cdot3\cdot d;d=\frac{1}{3}\cdot3\cdot a\)\(\Rightarrow a=b;b=c;c=d;d=a\Rightarrow a=b=c=d\)(đpcm)

a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)

Áp dụng tỉ lệ thức ta có :

\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\)\(\frac{4a}{4c}=\frac{3b}{3d}\Rightarrow\frac{4a+3b}{4c+3d}=\frac{4c-3d}{4c-3d}\)

b) Có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)

Áp dụng tỉ lệ thức ta có "

\(\frac{2a}{3b}=\frac{2c}{3d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\Rightarrow\frac{2a-3b}{2c-3d}=\frac{2a3b}{2c+3d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

Các câu còn lại bạn làm tương tự

3 tháng 1 2021

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{3b}=\dfrac{b}{3c}=\dfrac{c}{3d}=\dfrac{d}{3a}=\dfrac{a+b+c+d}{3b+3c+3d+3x}=\dfrac{a+b+c+d}{3.\left(a+b+c+d\right)}=\dfrac{1}{3}\\ \Rightarrow a=\dfrac{1}{3}.3b=b\\ \Rightarrow b=\dfrac{1}{3}.3c=c\\ \Rightarrow c=\dfrac{1}{3}.3d=d\\ \Rightarrow d=\dfrac{1}{3}.3a=a\) 

\(\text{a=b=c=d}\)

Tick cho mình nhé