K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2018

cm chia hết cho n nhưng ko chia hết cho n2

25 tháng 1 2018

còn phương pháp nào không bạn

DD
26 tháng 11 2021

Gọi ba tự nhiên lẻ bất kì lần lượt là \(2m+1,2n+1,2p+1\).

Ta có: \(\left(2m+1\right)^2+\left(2n+1\right)^2+\left(2p+1\right)^2\)

\(=4m^2+4m+1+4n^2+4n+1+4p^2+4p+1\)

\(\equiv3\left(mod4\right)\)

mà số chính phương khi chia cho \(4\)chỉ có thể dư \(0\)hoặc \(1\).

Do đó ta có đpcm. 

16 tháng 7 2015

Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2

Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 =  (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n+ 2)

 Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25 

vì n2 + 2 không chia hết cho 5 (do n2 có thể  tận cùng là 0;1;4;5;6;9 )

=> 5.(n+ 2) không là số chính phương => đpcm

16 tháng 7 2015

Gọi 5 số tự nhiên liên tiếp là (a-2 ) (a-1) a (a+1) (a+2)
Ta có : 
Ta có số chính phương luôn luôn có dạng 4k +1 hoặc 4k
Xét 2 TH ta luôn có:
TH1: 
Ta có A= 20k + 10 = 4m + 2 (m thuộc N)  ko là số chính phương
TH2: 
Ta có: A= 20k + 15 = 4m + 3(m thuộc N)  ko là số chính phương

15 tháng 10 2018

Gọi A là số chính phương A = n2 (n ∈ N)

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

bạn à câu C hình như bạn viết thiếu đề

24 tháng 9 2017

mị lớp > chị nên đừng hỏi tui cái này

19 tháng 7 2016

đây là câu hỏi trong chuyên đề SCP ở HỌC BÀI mà

19 tháng 7 2016

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương

K nhak ^_^ ^_^ ^_^

1 tháng 12 2016
Số chính phương chẵn và lẻ
 
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
 
Đặc điểm
 
Số chính phương không bao giờ tận cùng là 2, 3, 7, 8. Khi phân tích 1 số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn. Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2;số chính phương lẻ khi chia 8 luôn dư 1. Điều này được sử dụng nhiều trong việc giải các bài tập. Ngoài ra, công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)x(a-b). Số ước của số chính phương là một số lẻ. Số chính phương chia hết cho p thì chia hết cho p^2(p là số nguyên tố)
 
MỘT SỐ BÀI TOÁN CHỨNG MINH LIÊN QUAN SỐ CHÍNH PHƯƠNG

Bài 1 : CHỨNG MINH MỘT SỐ KHÔNG PHẢI LÀ SỐ CHÍNH PHƯƠNG

 

1. Nhìn chữ số tận cùng

Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9. Từ đó các em có thể giải được bài toán kiểu sau đây :

Nếu số chính phương chia hết cho số nguyên tố p thì phải chia hết cho p2.

2. Dùng tính chất của số dư

3. “Kẹp” số giữa hai số chính phương “liên tiếp” Các em có thể thấy rằng : Nếu n là số tự nhiên và số tự nhiên k thỏa mãn n2 < k < (n + 1)2 thì k không là số chính phương.

1 tháng 12 2016

còn thiếu một cách nữa bạn ạ

mà bạn cũng chẳng cần dài dòng vậy đâu

 

12 tháng 1 2016

Giả sử 3n+4 là SCP => 3n+4=a2

Mà 3 nâng lên lũy thừa bao nhiêu cũng có tận cùng là 1 số lẻ, mà số lẻ+số chẵn=số lẻ nên a2 là số lẻ

=> a là số lẻ

=> a có dạng 4k+1 hoặc 4k+3

+) Nếu a=4k+1 thì a2=(4k+1)2=(4k+1)(4k+1)=16k2+8k+1=8m+1

+) Nếu a=4k+3 thì a2=(4k+3)2=(4k+3)(4k+3)=16k2+24k+9=8m+1

Vậy a2=8m+1          (1)

Mặt khác, nếu n chẵn thì 3n+4=32k+4=9k+4=(8+1)k.3+4=8h+1+4=8h+5    (trái với 1)

nếu n lẻ thì n=2k+1=>3n+4=32k+1+4=9k.3+4=(8+1)k.3+4=(8k+1).3+4=8h+1      (trái với 1)

  Vậy 3n+4 không thể là SCP

tick nha!

5 tháng 8 2017

vì số chính phương b là một số a bình phương lên nên sẽ xảy ra các trường hợp sau

nếu số a có tận cùng là 2 thì b sẽ có tận cùng là 2^2=4 là 4

nếu --------------------------3--------------------------------- 3^2=9 là 9

nếu---------------------------4---------------------------------4^2=16 là 6

nếu -------------------------5----------------------------------5^2 =25 là 5

nếu--------------------------6---------------------------------- 6^2=36 là 6

nếu -------------------------7----------------------------------7^2=49 là 9

nếu ------------------------8----------------------------------8^2=64 là 4

nếu -----------------------9-----------------------------------9^2=81 là 1

loại tất cả những số trên ra ta thấy còn 2,3,7,8 chưa xuất hiện

=> số chính phương không có tận cùng là 2,3,7,8