
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: tia CD nằm giữa hai tia CF và CB
=>\(\hat{BCF}=\hat{BCD}+\hat{FCD}=20^0+50^0=70^0\)
Ta có: \(\hat{BCF}=\hat{ABC}\left(=70^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CF
Ta có: \(\hat{EDC}+\hat{DCF}=130^0+50^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên ED//CF
Ta có: AB//CF
ED//CF
Do đó: AB//DE

a: Ta có: tia CA nằm giữa hai tia CB và CD
=>\(\hat{BCD}=\hat{BCA}+\hat{ACD}=80^0+30^0=110^0\)
Ta có: \(\hat{DCB}+\hat{B}=110^0+70^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
b: ta có: AB//CD
=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)
=>\(\hat{BAC}=80^0\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}=\frac{a+b-c+a+c-b+b+c-a}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=>\(\begin{cases}a+b-c=c\\ a+c-b=b\\ b+c-a=a\end{cases}\Rightarrow\begin{cases}a+b=2c\\ a+c=2b\\ b+c=2a\end{cases}\)
\(A=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)

a: Ta có: tia CA nằm giữa hai tia CB và CD
=>\(\hat{BCD}=\hat{BCA}+\hat{DCA}=80^0+30^0=110^0\)
ta có: \(\hat{BCD}+\hat{CBA}=110^0+70^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
b: AB//CD
=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)
=>\(\hat{BAC}=80^0\)
a, ta có A= 180 độ -70 độ -30 độ = 80 độ ( tổng 3 góc trong 1 tam giác = 180 độ )
mà AB=CD=80 độ nên AB//CD ( vì song song nên bằng nhau ) 1
b, góc BAC = 80 độ (1)

Bài 8:
Chu vi đáy là:
3,5+3,5+3+6=7+9=16(cm)
Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)
Bài 9:
Diện tích đáy là:
\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)
Thể tích của khối bê tông là:
\(84\cdot22=1848\left(m^3\right)\)
Số tiền phải trả là:
\(1848\cdot2500000=4620000000\) (đồng)

Bài 2:
a: Xét ΔMAB và ΔMCD có
MA=MC
\(\hat{AMB}=\hat{CMD}\) (hai góc đối đỉnh)
MB=MD
Do đó: ΔMAB=ΔMCD
=>AB=CD
ΔMAB=ΔMCD
=>\(\hat{MAB}=\hat{MCD}\)
=>\(\hat{MCD}=90^0\)
=>CD⊥CA
b: Xét ΔDCB có CB+CD>BD
mà CD=AB
nên CB+AB>BD
=>BA+BC>2BM
c: Ta có: ΔABC vuông tại A
=>BC là cạnh huyền
=>BC là cạnh lớn nhất trong ΔABC
=>BC>AB
mà AB=CD
nên BC>CD
Xét ΔCBD có CB>CD
ma \(\hat{CDB};\hat{CBD}\) lần lượt là góc đối diện của các cạnh CB,CD
nên \(\hat{CDB}>\hat{CBD}\)
mà \(\hat{CDB}=\hat{ABD}\) (ΔMAB=ΔMCD)
nên \(\hat{ABD}>\hat{CBD}\)
Bài 3:
a: Xét ΔAEB vuông tại E và ΔADC vuông tại D có
AB=AC
\(\hat{EAB}\) chung
Do đó: ΔAEB=ΔADC
=>AE=AD
=>ΔAED cân tại A
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
AD=AE
Do đó: ΔADH=ΔAEH
=>\(\hat{DAH}=\hat{EAH}\)
=>AH là phân giác của góc DAE
c: Xét ΔABC có \(\frac{AD}{AB}=\frac{AE}{AC}\)
nên DE//BC
d: Ta có: ΔADH=ΔAEH
=>HD=HE
ΔABE=ΔACD
=>BE=CD
Ta có: BE=BH+HE
CD+CH+HD
ma BE=CD va HE=HD
nên HB=HC
=>H nằm trên đường trung trực của BC(1)
ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
Ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,H,M thẳng hàng

d: ĐKXĐ: x>=2
Ta có: \(\left(3\sqrt{x-2}+2\right)\left(\sqrt{x-1}+x\right)=0\)
mà \(3\sqrt{x-2}+2\ge2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x-1}=x\)
=>\(\begin{cases}x-1=x^2\\ x\ge0\end{cases}\Rightarrow\begin{cases}x^2-x+1=0\\ x\ge2\end{cases}\)
=>\(\begin{cases}x^2-x+\frac14+\frac34=0\\ x\ge2\end{cases}\Rightarrow\begin{cases}\left(x-\frac12\right)^2+\frac34=0\left(vôlý\right)\\ x\ge2\end{cases}\)
=>x∈∅

Bài 2:
Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz
ta có: BD//Ax
=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABD}=180^0-125^0=55^0\)
Ta có: BD//Cz
=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)
=>\(\hat{DBC}=180^0-130^0=50^0\)
Ta có: tia BD nằm giữa hai tia BA và BC
=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)
=>\(\hat{ABC}=55^0+50^0=105^0\)
Bài 3:
Ax//yy'
=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)
=>\(\hat{yBA}=50^0\)
Cz//yy'
=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)
=>\(\hat{yBC}=40^0\)
Ta có: tia By nằm giữa hai tia BA và BC
=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)
Bài 4:
Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz
BD//Ax
=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABD}=180^0-110^0=70^0\)
ta có; tia BD nằm giữa hai tia BA và BC
=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)
=>\(\hat{DBC}=100^0-70^0=30^0\)
Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//Cz
Ta có: BD//Ax
BD//Cz
Do đó: Ax//Cz
a: Ta có: tia CA nằm giữa hai tia CB và CD
=>\(\hat{BCD}=\hat{BCA}+\hat{DCA}=80^0+30^0=110^0\)
ta có: \(\hat{BCD}+\hat{CBA}=110^0+70^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
b: AB//CD
=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)
=>\(\hat{BAC}=80^0\)