Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân số \(\frac{15}{17}\) đã tối giản
rút gọn phân số \(\frac{70}{105}=\frac{70:35}{105:35}=\frac{2}{3}\)
* Trả lời :
\(a,\frac{21}{36}=\frac{7}{12}\)
\(b,\frac{23}{73}\)là phân số đã tối giản
\(\frac{1}{5}=\frac{1.3}{5.3}=\frac{3}{15}\)
\(\frac{-10}{55}=\frac{-10\div5}{55\div5}=\frac{-2}{11}\)
Vậy ba cặp số phân số bằng nhau sau khi sử dụng tính chất cơ bản
2 .
\(\frac{-12}{-3}=\frac{-12:3}{-3:3}=\frac{-4}{-1};\frac{7}{-35}=\frac{7:7}{-35:7}=\frac{1}{-5};\frac{-9}{27}=\frac{-9:9}{27:9}=\frac{-1}{3}\)
3 .
\(15min=\frac{1}{4}\)giờ
\(90min=\frac{3}{2}\)giờ
a) \(\dfrac{{50}}{{85}}\)
Ta có: \(50 =2.5^2; 85= 5.17\)
Thừa số nguyên tố chung là 5 với số mũ nhỏ nhất là 1 nên ƯCLN(50, 85) = 5. Do đó, \(\dfrac{{50}}{{85}}\) chưa là phân số tối giản
Ta có: \(\dfrac{{50}}{{85}} = \dfrac{{50:5}}{{85:5}} = \dfrac{{10}}{{17}}\)
b)\(\dfrac{{23}}{{81}}\)
Ta có: \(23 = 23; 81 = 3^4\)
Chúng không có thừa số nguyên tố chung nên ƯCLN(23, 81) = 1. Do đó, \(\dfrac{{23}}{{81}}\) là phân số tối giản.
a) Vì \(\frac{a}{b}\)là 1 ps chưa tối giản
=> Ta có công thức: \(\hept{\begin{cases}a=kd\\b=hd\end{cases}\left(\left(a;b\right);\left(k;h\right)=d=1\right)}\)
=> \(\frac{a}{a-b}=\frac{kd}{kd-hd}=\frac{kd}{\left(k-h\right)d}\)chưa là phân số tối giản ( có thể rút gọn dc nx)
b) \(\frac{2a}{a-2b}=\frac{2kd}{kd-2hd}=\frac{2kd}{\left(k-2h\right)d}\)chưa là phân số tối giản (có thể rút gọn dc nx)
\(\frac{a}{b}\) là phân số chưa tối giản
\(\Leftrightarrow\hept{\begin{cases}a=k.a_1\\b=k.b_1\end{cases}}\) \(\left[ƯCLN\left(a;b\right)=k;ƯCLN\left(a_1;b_1\right)=1\right]\)
\(\frac{2a}{a-2b}=\frac{2.k.a_1}{k.a_1-2.k.b_1}=\frac{2k.a_1}{k\left(a_1-2.b_1\right)}\) chưa tối giản
=> đpcm
a) Phân số đã cho chưa tối giản
\(\dfrac{27}{123}=\dfrac{9\cdot3}{41\cdot3}=\dfrac{9}{41}\)
b) Phân số đã cho chưa tối giản
\(\dfrac{33}{77}=\dfrac{3\cdot11}{7\cdot11}=\dfrac{3}{7}\)