Các phân giác ngoài của tam giác ABC cắt nhau tạo t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

\(\widehat{ADB}=180^0-80^0=100^0\)

Ta có: \(\widehat{ADB}+\widehat{BAD}+\widehat{B}=\widehat{ADC}+\widehat{CAD}+\widehat{C}\)

\(\Leftrightarrow\widehat{B}+100^0=\widehat{C}+80^0\)

\(\Leftrightarrow1.5\widehat{C}-\widehat{C}=-20^0\)

\(\Leftrightarrow\widehat{C}=40^0\)

hay \(\widehat{B}=60^0\)

=>\(\widehat{BAC}=80^0\)

31 tháng 12 2015

à....................................

31 tháng 12 2015

các bạn ơi làm nhanh lên giúp mình với

16 tháng 8

Kết quả:

\(\angle C E D = \frac{\mid A - B \mid}{2} .\)

Giải nhanh: Gọi \(C = 180^{\circ} - A - B\). Vì \(C E\) là tia phân giác góc ngoài tại \(C\), nên nó tạo với \(C A\) một góc

\(\hat{\left(\right. C E , C A \left.\right)} = 90^{\circ} - \frac{C}{2} .\)

Qua \(E\) kẻ đường thẳng song song với \(C A\); đường này tạo với \(A B\) một góc bằng \(A\). Do đó góc giữa \(C E\)\(A B\) (chính là \(\angle C E D\)) bằng

\(\mid \textrm{ } A - \left(\right. 90^{\circ} - \frac{C}{2} \left.\right) \mid .\)

Thay \(C = 180^{\circ} - A - B\) vào, ta có \(90^{\circ} - \frac{C}{2} = \frac{A + B}{2}\). Suy ra

\(\angle C E D = \mid A - \frac{A + B}{2} \mid = \frac{\mid A - B \mid}{2} .\)

(Với quy ước lấy góc nhọn tại \(E\); nếu \(A \geq B\) thì \(\angle C E D = \frac{A - B}{2}\), còn nếu \(A < B\) thì \(\angle C E D = \frac{B - A}{2}\).)

Vì CD và CE là hai tia phân giác của hai góc kề bù

nên CD⊥CE

=>ΔDCE vuông tại C

Xét ΔADC có \(\hat{BDC}\) là góc ngoài tại đỉnh D

nên \(\hat{BDC}=\hat{DAC}+\hat{DCA}=\hat{BAC}+\frac12\cdot\hat{ACB}\)

\(=\hat{BAC}+\frac12\left(180^0-\hat{BAC}-\hat{ABC}\right)=90^0+\frac12\cdot\hat{BAC}-\frac12\cdot\hat{ABC}\)

Xét ΔDCE vuông tại C có \(\hat{CDE}+\hat{CED}=90^0\)

=>\(\hat{CED}=90^0-\left(90^0+\frac12\cdot\hat{BAC}-\frac12\cdot\hat{ABC}\right)=-\frac12\cdot\hat{BAC}+\frac12\cdot\hat{ABC}\)

10 tháng 9 2017

ngu như con lợn

10 tháng 9 2017

Xin chào đồng loại. À k, fải là xin chào "c - hó" ms đúng tên của pạn chứ nhỉ, bạn "depgiaicogisaidau" thân yêu!

P/s: mai đổi thành "lachocogisaidau" nha!

15 tháng 11 2017

Bạn xem ở đường link này:

Câu hỏi của Cùng học toán đi - Toán lớp 6 - Học toán với OnlineMath

NM
6 tháng 11 2020

Hình vẽ a chèn không rõ được không, chắc giống của e thôi. 

https://1drv.ms/u/s!AhUPZHs4UJtKilHrVZWqF8i6a584?e=0TIfMP

Ta có : \(\widehat{BIC}=180^0-\widehat{IBC}-\widehat{ICB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)

\(\Rightarrow\widehat{BIC}=180^0-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\)( Do IB,IC là tia phân giác của góc ABC và ACB)

còn \(\widehat{BKC}=180^0-\widehat{KBC}-\widehat{KCB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)

\(\Rightarrow\widehat{BKC}=180^0-\frac{\widehat{xBC}}{2}-\frac{\widehat{yCB}}{2}\)( Do KB,KC là tia phân giác của góc ABC và ACB)

Mà \(\hept{\begin{cases}\widehat{xBC}=180^0-\widehat{ABC}\\\widehat{yCB}=180^0-\widehat{ACB}\end{cases}}\)\(\Rightarrow\widehat{BKC}=180^0-\left(\frac{180^0-\widehat{ABC}}{2}+\frac{180^0-\widehat{ACB}}{2}\right)\)

\(\Rightarrow\widehat{BKC}=\frac{\widehat{ABC}}{2}+\frac{\widehat{ACB}}{2}\)