K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

Hình 2.70a biểu diễn hình bình hành

Hình 2.70b biểu diễn hình vuông

Hình 2.70c biểu diễn hình thoi

Hình 2.70d biểu diễn hình chữ nhật

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Hình chóp S.ABCD có các mặt bên là hình tam giác nên hình biểu diễn của nó cũng có các mặt bên là hình tam giác.

ABCD là hình bình hành nên hình biểu diễn của nó cũng là hình bình hành

Từ đó, ta vẽ được hình biểu diễn của hình chóp S.ABCD

3 tháng 2 2017

Chọn B.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- + Các bộ véctơ ở phương án A, C, D không thể có giá cùng song song với một mặt phẳng.

23 tháng 1 2022

TL :

Đáp án C

HT

@@@@@@@@@

23 tháng 1 2022
PpppppoopoooopWe 
  
  
QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Vì \(ABCD.A'B'C'D'\) là hình lăng trụ nên có:

‒ Hai đáy \(ABCD\) và \(A'B'C'D'\) bằng nhau và là hình bình hành.

‒ Các mặt bên \(AA'B'B,AA'D'D,BB'C'C,CC'D'D\) là các hình bình hành.

b) Ta có:

\(\left. \begin{array}{l}\left( {ABC{\rm{D}}} \right)\parallel \left( {A'B'C'D'} \right)\\\left( {AA'C'C} \right) \cap \left( {ABC{\rm{D}}} \right) = AC\\\left( {AA'C'C} \right) \cap \left( {A'B'C'D'} \right) = A'C'\end{array} \right\} \Rightarrow AC\parallel A'C'\)

Mà \(AA'\) và \(CC'\) là các cạnh bên của hình lăng trụ nên \(AA'\parallel CC'\)

Vậy \(AA'C'C\) là hình bình hành.

\(\left. \begin{array}{l}\left( {ABC{\rm{D}}} \right)\parallel \left( {A'B'C'D'} \right)\\\left( {BB'D'D} \right) \cap \left( {ABC{\rm{D}}} \right) = B{\rm{D}}\\\left( {BB'D'D} \right) \cap \left( {A'B'C'D'} \right) = B'D'\end{array} \right\} \Rightarrow B{\rm{D}}\parallel B'D'\)

Mà \(BB'\) và \(DD'\) là các cạnh bên của hình lăng trụ nên \(BB'\parallel DD'\)

Vậy \(BB'D'D\) là hình bình hành.

c) Ta có:

\(\left. \begin{array}{l}\left( {ABC{\rm{D}}} \right)\parallel \left( {A'B'C'D'} \right)\\\left( {A'B'C{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right) = C{\rm{D}}\\\left( {A'B'C{\rm{D}}} \right) \cap \left( {A'B'C'D'} \right) = A'B'\end{array} \right\} \Rightarrow C{\rm{D}}\parallel A'B'\left( 1 \right)\)

\(ABC{\rm{D}}\) là hình bình hành nên \(AB = CD\)

\(AA'B'B\) là hình bình hành nên \(AB = A'B'\)

Vậy \(A'B' = CD\left( 2 \right)\)

Từ (1) và (2) suy ra \(A'B'C{\rm{D}}\) là hình bình hành

\( \Rightarrow A'C,B'D\) cắt nhau tại trung điểm của mỗi đường.

Chứng minh tương tự ta có:

+ \(ABC'D'\) là hình bình hành nên \(AC',B{\rm{D}}'\) cắt nhau tại trung điểm của mỗi đường

+ \(A'BCD'\) là hình bình hành nên \(A'C,B{\rm{D}}'\) cắt nhau tại trung điểm của mỗi đường

Do đó bốn đoạn thẳng \(A'C,AC',B'D,BD\) có cùng trung điểm.

22 tháng 10 2023

1: Số mặt bên là 4

\(SAB;SAD;SBC;SCD\)

2: Số cạnh đáy là 4

AB,BC,CD,DA

3: SA và BC là hai đường thẳng chéo nhau

4: 4 đỉnh: A,B,C,D

5: Có 7 mặt: \(SAB;SAD;SBC;SCD;SAC;SBD;ABCD\)

6C

26 tháng 1 2018

Đáp án C

Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD

Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN

Khi đó H ∈  SI ⊂  (SBD); H  MN

Do đó H là giao điểm của MN và mặt phẳng (SBD)

24 tháng 10 2018

Hình chiếu song song của một hình vuông có thể là hình bình hành

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Xét tam giác SAB ta có: MN là đường trung bình suy ra MN // AB.

Tương tự ta có: NP // BC, PQ // CD, MQ // AD.

Mà ABCD là hình bình hành nên AB // CD, AD// CD, suy ra MN // PQ, MQ // NP.

Như vậy, MNPQ là hình bình hành.

25 tháng 1 2018

Đáp án B

Ta có: MN // BS ⇒ C M C B = C N C S

MQ // CD // AB (do ABCD là hình bình hành nên AB //CD) ⇒ C M C B = D Q D A

NP // CD ⇒ C N C S = D P D S

Do đó: D P D S = D Q D A  PQ // SA (Định lý Ta - lét trong tam giác SAD)

Lại có MN // BS và SB ∩  SA = S

Do đó MN không thể song song với PQ

Xét tứ giác MNPQ có NP // MQ (//CD)

Do đó MNPQ là hình thang.

Vậy khẳng địn (1) và (3) đúng.

Đáp án B