Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P
Từ giả thiết ta có \(2016=x^2y^2+1+x^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(\Leftrightarrow x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2015\)
Ta có \(S^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2015\)
\(\Rightarrow S=\sqrt{2015}\) (Vì S > 0)
Đặt \(t=\left|x-1\right|,t\ge0\)
Suy ra pt trở thành : \(t^2+t-2016=0\)
Xét \(\Delta=1^2-4.\left(-2016\right)=8065\)
\(\Rightarrow\begin{cases}t_1=\frac{-1-\sqrt{8065}}{2}\left(\text{loại}\right)\\t_2=\frac{-1+\sqrt{8065}}{2}\left(\text{nhận}\right)\end{cases}\)
Ta có \(\left|x-1\right|=\frac{-1+\sqrt{8065}}{2}\)
+ Nếu \(x\ge1\) thì \(x-1=\frac{-1+\sqrt{8065}}{2}\Rightarrow x=\frac{1+\sqrt{8065}}{2}\)(tm)
+ Nếu x < 1 thì \(1-x=\frac{-1+\sqrt{8065}}{2}\Rightarrow x=\frac{3-\sqrt{8065}}{2}\) (tm)
Nhân cả 2 vế của pt đầu với \(x-\sqrt{x^2+2013}\) được:
\(y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)
\(\Rightarrow x+y=\sqrt{x^2+2013}-\sqrt{y^2+3}\left(1\right)\)
Tương tự nhân 2 vế pt đầu với \(y-\sqrt{y^2+2013}\) được:
\(x+y=\sqrt{y^2+2013}-\sqrt{x^2+2013}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có: \(2\left(x+y\right)=0\Rightarrow x+y=0\)
Ta có \(f\left(x\right)+2f\left(\frac{1}{x}\right)=x^2\)
Xét với x = a thì ta có \(f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\) (1)
Xét với x = \(\frac{1}{a}\) thì ta có \(f\left(\frac{1}{a}\right)+2f\left(a\right)=\frac{1}{a^2}\)(2)
Từ (1) và (2) ta suy ra \(\hept{\begin{cases}f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\\f\left(\frac{1}{a}\right)+2f\left(a\right)=\frac{1}{a^2}\end{cases}\Leftrightarrow}\hept{\begin{cases}f\left(a\right)+2f\left(\frac{1}{a}\right)=a^2\left(1\right)\\2f\left(\frac{1}{a}\right)+4f\left(a\right)=\frac{2}{a^2}\left(2\right)\end{cases}}\)
Lấy (2) trừ (1) theo vế được \(3f\left(a\right)=\frac{2}{a^2}-a^2\Leftrightarrow f\left(a\right)=\frac{\frac{2}{a^2}-a^2}{3}=\frac{2-a^4}{3a^2}\)
Từ đó suy ra được \(f\left(x\right)=\frac{2-x^4}{3x^2}\)
Đến đây dễ dàng tính được f(2)
Mình kí hiệu (1) (2) hai lần , bạn sửa lại chỗ đó nhé ^^
Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .
\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)
\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)
Bài 2 :
a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).
Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)
Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)
\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)
b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)
Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)
Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)
\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)
Có: \(\left(\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}-\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}\right)^2\)
\(=\frac{1}{\frac{9}{4}+\sqrt{5}}+\frac{1}{\frac{9}{4}-\sqrt{5}}-2\cdot\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}\cdot\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}\)
\(=\frac{\frac{9}{4}-\sqrt{5}+\frac{9}{4}+\sqrt{5}}{\frac{1}{16}}-2\cdot\frac{1}{\frac{1}{4}}\)
\(=72-8=64\)
Mà; \(\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}< \frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}\)
\(\Rightarrow\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}-\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}< 0\)
Do đó: \(\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}-\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}=-8\)
Khi đó: \(x=9-8=1\)
Với \(x=1\), ta có:
\(f\left(1\right)=\left(1^4-3\cdot1+1\right)^{2016}=\left(-1\right)^{2016}=1\)
Bạn thiếu 1 TH nha !
Thay x=-2015 vào bt ,ta được :
\(\left(x-1\right)^2=2016\left|x-1\right|\)
\(\Rightarrow2016^2=2016\left|x-1\right|\)
\(\Rightarrow\left|x-1\right|=2016\)
\(\Rightarrow TH1:x-1=2016\Rightarrow x=2017\)
\(TH2:x-1=-2016\Rightarrow x=-2015\)
Vậy \(x\in\left\{2017;-2015\right\}\)