Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
R A M B H Q C D S N P
a) Xét tam giác vuông ABR và ADQ có:
AB = AD (gt)
Góc BAR + góc BAP = 90 độ
Góc DAQ + góc BAP = 90 độ
=> Góc BAR = Góc DAQ
=> Tam giác vuông ABR = tam giác vuông ADQ (cạnh góc vuông – góc nhọn kề)
=> AR = AQ (2 cạnh tương ứng)
=> Tam giác AQR cân tại A.
CMTT ta có tam giác ADS = tam giác ABP
=> AS = AP => Tam giác APS cân tại A.
b) Tam giác AQR cân tại A => Trung tuyến AM đồng thời là đường cao.
=> AM vuông góc với QR => Góc AMH = 90 độ
Tương tự: Tam giác APS cân tại A => Trung tuyến AN đồng thời là đường cao.
=> AN vuông góc với SP => góc ANP = 90 độ hay góc ANH= 90 độ.
Tam giác AQR vuông cân tại A => Góc AQR = góc ARQ = 45 độ => Góc PQH = 45 độ.
Tam giác APS vuông cân tại A => góc ASP = góc APS = 45 độ => góc QPH = 45 độ (đối đỉnh).
Xét tam giác PHQ có: Góc PQH + góc QPH = 45 độ + 45 độ = 90 độ
=> Tam giác PHQ vuông cân tại H => PH vuông góc với PQ
=> góc NHM = 90 độ
Xét tứ giác AMHN có: Góc AMH = góc ANH = góc NHM = 90 độ
=> AMHN là hình chữ nhật (dhnb)
c) Xét tam giác SQR có:
BC vuông góc CD => RC vuông góc SQ => RC là đường cao.
AP vuông góc AR => QA vuông góc RS => QA là đường cao.
Mà RC cắt QA tại P
Vậy P là trực tâm tam giác SQR.
d) Tam giác ANP vuông tại A có trung tuyến AN => AN = SP/2
Tam giác CSP vuông tại C có trung tuyến CN => CN = SP/2
=> AN = CN => N thuộc trung trực của AC.
CMTT ta có MA = MC => M thuộc trung trực của AC.
Vậy MN là trung trực của AC.
e) Ta có BA = BC (gt) => B thuộc trung trực của AC.
Mà MN là trung trực của AC (cmt) => B thuộc MN
Tương tự DA = DC (gt) => D thuộc trung trực của AC.
Mà MN là trung trực của AC (cmt) => D thuộc MN
Vậy M, B, N, D thẳng hàng.
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân