K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5:

a: ĐKXĐ: x≠-2

Ta có: \(1+\frac{1}{x+2}=\frac{12}{x^3+8}\)

=>\(1+\frac{1}{x+2}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)

=>\(\frac{x^3+8}{\left(x+2\right)\left(x^2-2x+4\right)}+\frac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)

=>\(x^3+8+x^2-2x+4=12\)

=>\(x^3+x^2-2x=0\)

=>\(x\left(x^2+x-2\right)=0\)

=>x(x+2)(x-1)=0

=>\(\left[\begin{array}{l}x=0\\ x+2=0\\ x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(nhận\right)\\ x=-2\left(loại\right)\\ x=1\left(nhận\right)\end{array}\right.\)

b: ĐKXĐ: x<>2/7

Ta có: \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)

=>\(\left(2x+3\right)\cdot\frac{3x+8+2-7x}{2-7x}=\left(x-5\right)\cdot\frac{3x+8+2-7x}{2-7x}\)

=>\(\left(2x+3\right)\cdot\frac{-4x+10}{2-7x}=\left(x-5\right)\cdot\frac{-4x+10}{2-7x}\)

=>\(\left(2x+3\right)\left(-4x+10\right)-\left(x-5\right)\left(-4x+10\right)=0\)

=>(-4x+10)(2x+3-x+5)=0

=>-2(2x-5)(x+8)=0

=>(2x-5)(x+8)=0

=>\(\left[\begin{array}{l}2x-5=0\\ x+8=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac52\left(nhận\right)\\ x=-8\left(nhận\right)\end{array}\right.\)

Bài 4:

a: ĐKXĐ: x∉{2;-1}

Ta có: \(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)

=>\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{\left(x-2\right)\left(x+1\right)}+1\)

=>\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x-2\right)\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}\)

=>(x-2)(x+2)+3(x+1)=3+(x-2)(x+1)

=>\(x^2-4+3x+3=3+x^2-x-2\)

=>3x-1=-x+1

=>4x=2

=>\(x=\frac12\) (nhận)

b: ĐKXĐ: x∉{5;-6}

Ta có: \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)

=>\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x+6\right)\left(x-5\right)}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)

=>\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

=>2x+61=23x+61

=>-21x=0

=>x=0(nhận)

Bài 3:

a: ĐKXĐ: x∉{5;-6}

Ta có: \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)

=>\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x+6\right)\left(x-5\right)}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)

=>\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

=>2x+61=23x+61

=>-21x=0

=>x=0(nhận)

b: ĐKXĐ: x∉{3;-3}

Ta có: \(\frac{x^2-x}{x+3}-\frac{x_{}^2}{x-3}=\frac{7x^2-3x}{9-x^2}\)

=>\(\frac{\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{-7x^2+3x}{\left(x-3\right)\left(x+3\right)}\)

=>\(\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)=-7x^2+3x\)

=>\(x^3-3x^2-x^2+3x-x^3-3x^2+7x^2-3x=0\)

=>0x=0(luôn đúng)

Vậy: x∉{3;-3}

Bài 2:

a: ĐKXĐ: x∉{-1;2}

ta có: \(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)

=>\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3+x^2-x-2}{\left(x-2\right)\left(x+1\right)}\)

=>\(\left(x+2\right)\left(x-2\right)+3\left(x+1\right)=x^2-x+1\)

=>\(x^2-4+3x+3=x^2-x+1\)

=>3x-1=-x+1

=>4x=2

=>\(x=\frac12\) (nhận)

b: ĐKXĐ: x∉{0;2}

ta có: \(\frac{5-x}{4x^2-8x}+\frac78=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)

=>\(\frac{5-x}{4x\left(x-2\right)}+\frac78=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8\left(x-2\right)}\)

=>\(\frac{4\left(5-x\right)}{16x\left(x-2\right)}+\frac{7\cdot2x\cdot\left(x-2\right)}{8\cdot2x\cdot\left(x-2\right)}=\frac{8\left(x-1\right)}{8\cdot2x\cdot\left(x-2\right)}+\frac{2x}{8\cdot2x\cdot\left(x-2\right)}\)

=>4(5-x)+14x(x-2)=8(x-1)+2x

=>\(20-4x+14x^2-28x=8x-8+2x\)

=>\(14x^2-32x+20-10x+8=0\)

=>\(14x^2-42x+28=0\)

=>\(x^2-3x+2=0\)

=>(x-2)(x-1)=0

=>x=2(loại) hoặc x=1(nhận)

Bài 1:

a: ĐKXĐ: x∉{1/4;-1/4}

ta có: \(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{6x+8}{16x^2-1}\)

=>\(\frac{-3}{4x-1}-\frac{2}{4x+1}=\frac{-6x-8}{\left(4x-1\right)\left(4x+1\right)}\)

=>\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}-\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}=\frac{-6x-8}{\left(4x-1\right)\left(4x+1\right)}\)

=>-3(4x+1)-2(4x-1)=-6x-8

=>-12x-3-8x+2=-6x-8

=>-20x-1=-6x-8

=>-14x=-7

=>x=1/2(nhận)

b: ĐKXĐ: x∉{1/5;3/5}

Ta có: \(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)

=>\(\frac{3}{5x-1}-\frac{2}{5x-3}=\frac{-4}{\left(5x-1\right)\left(5x-3\right)}\)

=>\(\frac{3\left(5x-3\right)}{\left(5x-1\right)\left(5x-3\right)}-\frac{2\left(5x-1\right)}{\left(5x-1\right)\left(5x-3\right)}=\frac{-4}{\left(5x-1\right)\left(5x-3\right)}\)

=>3(5x-3)-2(5x-1)=-4

=>15x-9-10x+2=-4

=>5x-7=-4

=>5x=3

=>x=3/5(loại)

Bài 3:

a: ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của BC

Xét ΔBOD có

BI là đường cao

BI là đường trung tuyến

Do đó: ΔBOD cân tại B

=>BO=BD

ma BO=OD

nên BO=BD=OD

=>ΔBOD đều

=>\(\hat{BOD}=\hat{BDO}=\hat{OBD}=60^0\)

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>\(\hat{BAD}+\hat{BDA}=90^0\)

=>\(\hat{BAD}=90^0-60^0=30^0\)

Xét ΔAIB vuông tại I và ΔAIC vuông tại I có

AI chung

IB=IC

Do đó: ΔAIB=ΔAIC

=>AB=AC

ΔAIB=ΔAIC

=>\(\hat{IAB}=\hat{IAC}\)

=>AI là phân giác của góc BAC

=>\(\hat{BAC}=2\cdot\hat{BAD}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\hat{BAC}=60^0\)

nên ΔABC đều

b: ΔOBD đều

=>BD=OB=R

ΔABD vuông tại B

=>\(BA^2+BD^2=AD^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt3\)

=>\(BA=AC=BC=R\sqrt3\)


15 tháng 8

Bài 2:

Gọi vận tốc lúc đi là \(v\) (km/h), vận tốc lúc về là \(1,2 v\).
Quãng đường mỗi lượt là 120 km.

– Thời gian đi: \(\frac{120}{v}\)
– Thời gian về: \(\frac{120}{1,2 v} = \frac{100}{v}\)

Tổng thời gian đi và về bằng 4,4 giờ nên:

\(\frac{120}{v}+\frac{100}{v}=4,4\Rightarrow\frac{220}{v}=4,4\Rightarrow v=\frac{220}{4,4}=50(\text{km}/\text{h})\)

=> Vậy vận tốc lúc đi là 50 km/h, vận tốc lúc về là 60 km/h.

Bài 1b:

\(\frac{2}{3 x - 1} + \frac{1}{x} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} (Đ\text{KX}Đ:\&\text{nbsp}; x \neq 0 , \textrm{ }\textrm{ } 3 x \neq 1 )\)

Quy đồng:

\(\frac{2 x + \left(\right. 3 x - 1 \left.\right)}{x \left(\right. 3 x - 1 \left.\right)} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} \Rightarrow \frac{5 x - 1}{x \left(\right. 3 x - 1 \left.\right)} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} \Rightarrow 5 x - 1 = 4 \Rightarrow 5 x = 5 \Rightarrow x = 1\)

Kiểm tra ĐKXĐ: \(x = 1\) thỏa mãn.

=> Vậy nghiệm của phương trình là \(x = 1\).

15 tháng 8

tukgkdu

tungtungtungsahur




a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\) (2)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

\(AE\cdot AB=AH^2\)

=>\(AE=\frac{AH^2}{AB}\)

\(AF\cdot AC=AH^2\)

=>\(AF=\frac{AH^2}{AC}\)

Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>\(S_{AEHF}=AE\cdot AF=\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac{AH^4}{AH\cdot BC}=\frac{AH^3}{BC}\)

Bài 4:

a: ΔCAB vuông tại C

=>\(\hat{CAB}+\hat{CBA}=90^0\)

=>\(\hat{CBA}=90^0-70^0=20^0\)

Xét ΔCBA vuông tại C có \(\sin CBA=\frac{CA}{AB}\)

=>\(CA=AB\cdot\sin CBA=10\cdot\sin20\) ≃3,4(dm)

ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=AB^2-CA^2\)

=>\(CB=\sqrt{AB^2-AC^2}\) ≃9,4(dm)

b: Xét ΔABC vuông tại C có \(cosA=\frac{CA}{AB}\)

Xét ΔCHA vuông tại H có \(cosA=\frac{AH}{AC}\)

Xét ΔCHB vuông tại H có \(\sin B=\frac{CH}{CB}\)

Xét ΔCAB vuông tại C có \(\sin B=\frac{AC}{AB}\)

\(\sin B\cdot cosA=\frac{AC}{AB}\cdot\frac{AH}{AC}=\frac{AH}{AB}\)

Bài 5:

Xét ΔMAB có \(\hat{MBH}\) là góc ngoài tại đỉnh B

nên \(\hat{MBH}=\hat{A}+\hat{BMA}\)

=>\(\hat{BMA}=39^0-18^0=21^0\)

Xét ΔMAB có \(\frac{AB}{\sin AMB}=\frac{MB}{\sin A}\)

=>\(\frac{MB}{\sin18}=\frac{80}{\sin21}\)

=>\(MB=80\cdot\frac{\sin18}{\sin21}\) ≃69(m)

Xét ΔMHB vuông tại H có \(\sin HBM=\frac{HM}{MB}\)

=>\(HM=MB\cdot\sin HBM\) ≃69*sin39≃43,4(m)

=>Chiều cao của ngọn hải đăng là khoảng 43,4 mét

15 tháng 8

em cảm ơn a nhiều ạ

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\) (2)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

\(AE\cdot AB=AH^2\)

=>\(AE=\frac{AH^2}{AB}\)

\(AF\cdot AC=AH^2\)

=>\(AF=\frac{AH^2}{AC}\)

Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>\(S_{AEHF}=AE\cdot AF=\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac{AH^4}{AH\cdot BC}=\frac{AH^3}{BC}\)

15:

a: Gọi giá niêm yết của mỗi cái quạt là x(đồng), giá niêm yết của mỗi cái bàn ủi hơi nước là y(đồng)

(ĐIều kiện: x>0; y>0)

Giá của mỗi cái quạt sau khi giảm giá là: \(x\left(1-10\%\right)=0,9x\) (đồng)

Giá của mỗi cái bàn ủi sau khi giảm giá là: \(y\left(1-25\%\right)=0,75\) y(đồng)

Số tiền phải trả nếu mua theo giá niêm yết là 2175000 nên x+y=2175000(1)

Số tiền phải trả nếu mua theo giá đã giảm là 1717500 nên 0,9x+0,75y=1717500(2)

Từ (1),(2) ta có hệ phương trình:

\(\begin{cases}x+y=2175000\\ 0,9x+0,75y=1717500\end{cases}\Rightarrow\begin{cases}0,9x+0,9y=1957500\\ 0,9x+0,75y=1717500\end{cases}\)

=>\(\begin{cases}0,9x+0,9y-0,9x-0,75y=1957500-1717500=240000\\ x+y=2175000\end{cases}\)

=>\(\begin{cases}0,15y=240000\\ x+y=2175000\end{cases}\Rightarrow\begin{cases}y=1600000\\ x=2175000-1600000=575000\end{cases}\) (nhận)

vậy: giá niêm yết của mỗi cái quạt là 575000(đồng), giá niêm yết của mỗi cái bàn ủi hơi nước là 1600000(đồng)

b: Giá của mỗi cái quạt sau khi giảm giá là:

\(575000\cdot0,9=517500\) (đồng)

Giá vốn của mỗi cái quạt là:

\(517500\cdot\frac{100}{115}=450000\) (đồng)

giá của mỗi cái bàn ủi hơi nước sau khi giảm giá là:

\(1600000\cdot75\%=1200000\left(đồng\right)\)

Giá vốn của mỗi cái bàn ủi là:

\(1200000\cdot\frac{100}{120}=1000000\) (đồng)

Bài 12: Gọi số cần tìm có dạng là \(\overline{ab}\)

Tổng của hai chữ số là 12 nên a+b=12

Nếu viết theo thứ tự ngược lại thì số mới lớn hơn số cũ là 18 đơn vị nên ta có:

\(\overline{ba}-\overline{ab}=18\)

=>10b+a-10a-b=18

=>-9a+9b=18

=>a-b=-2

mà a+b=12

nên \(a=\frac{-2+12}{2}=\frac{10}{2}=5;b=12-5=7\)

vậy: Số cần tìm là 57