
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 3:
a: ΔOBC cân tại O
mà OI là đường cao
nên I là trung điểm của BC
Xét ΔBOD có
BI là đường cao
BI là đường trung tuyến
Do đó: ΔBOD cân tại B
=>BO=BD
ma BO=OD
nên BO=BD=OD
=>ΔBOD đều
=>\(\hat{BOD}=\hat{BDO}=\hat{OBD}=60^0\)
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>\(\hat{BAD}+\hat{BDA}=90^0\)
=>\(\hat{BAD}=90^0-60^0=30^0\)
Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AI chung
IB=IC
Do đó: ΔAIB=ΔAIC
=>AB=AC
ΔAIB=ΔAIC
=>\(\hat{IAB}=\hat{IAC}\)
=>AI là phân giác của góc BAC
=>\(\hat{BAC}=2\cdot\hat{BAD}=2\cdot30^0=60^0\)
Xét ΔABC có AB=AC và \(\hat{BAC}=60^0\)
nên ΔABC đều
b: ΔOBD đều
=>BD=OB=R
ΔABD vuông tại B
=>\(BA^2+BD^2=AD^2\)
=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(BA=R\sqrt3\)
=>\(BA=AC=BC=R\sqrt3\)

Bài 2:
Gọi vận tốc lúc đi là \(v\) (km/h), vận tốc lúc về là \(1,2 v\).
Quãng đường mỗi lượt là 120 km.
– Thời gian đi: \(\frac{120}{v}\)
– Thời gian về: \(\frac{120}{1,2 v} = \frac{100}{v}\)
Tổng thời gian đi và về bằng 4,4 giờ nên:
\(\frac{120}{v}+\frac{100}{v}=4,4\Rightarrow\frac{220}{v}=4,4\Rightarrow v=\frac{220}{4,4}=50(\text{km}/\text{h})\)
=> Vậy vận tốc lúc đi là 50 km/h, vận tốc lúc về là 60 km/h.
Bài 1b:
\(\frac{2}{3 x - 1} + \frac{1}{x} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} (Đ\text{KX}Đ:\&\text{nbsp}; x \neq 0 , \textrm{ }\textrm{ } 3 x \neq 1 )\)
Quy đồng:
\(\frac{2 x + \left(\right. 3 x - 1 \left.\right)}{x \left(\right. 3 x - 1 \left.\right)} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} \Rightarrow \frac{5 x - 1}{x \left(\right. 3 x - 1 \left.\right)} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} \Rightarrow 5 x - 1 = 4 \Rightarrow 5 x = 5 \Rightarrow x = 1\)
Kiểm tra ĐKXĐ: \(x = 1\) thỏa mãn.
=> Vậy nghiệm của phương trình là \(x = 1\).

a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64=8^2\)
=>AC=8(cm)
Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)
nên \(\hat{C}\) ≃37 độ
ΔABC vuông tại A
=>\(\hat{B}+\hat{C}=90^0\)
=>\(\hat{B}=90^0-37^0=53^0\)
b: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\) (2)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
\(AE\cdot AB=AH^2\)
=>\(AE=\frac{AH^2}{AB}\)
\(AF\cdot AC=AH^2\)
=>\(AF=\frac{AH^2}{AC}\)
Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>\(S_{AEHF}=AE\cdot AF=\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac{AH^4}{AH\cdot BC}=\frac{AH^3}{BC}\)

Bài 4:
a: ΔCAB vuông tại C
=>\(\hat{CAB}+\hat{CBA}=90^0\)
=>\(\hat{CBA}=90^0-70^0=20^0\)
Xét ΔCBA vuông tại C có \(\sin CBA=\frac{CA}{AB}\)
=>\(CA=AB\cdot\sin CBA=10\cdot\sin20\) ≃3,4(dm)
ΔCAB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(CB^2=AB^2-CA^2\)
=>\(CB=\sqrt{AB^2-AC^2}\) ≃9,4(dm)
b: Xét ΔABC vuông tại C có \(cosA=\frac{CA}{AB}\)
Xét ΔCHA vuông tại H có \(cosA=\frac{AH}{AC}\)
Xét ΔCHB vuông tại H có \(\sin B=\frac{CH}{CB}\)
Xét ΔCAB vuông tại C có \(\sin B=\frac{AC}{AB}\)
\(\sin B\cdot cosA=\frac{AC}{AB}\cdot\frac{AH}{AC}=\frac{AH}{AB}\)
Bài 5:
Xét ΔMAB có \(\hat{MBH}\) là góc ngoài tại đỉnh B
nên \(\hat{MBH}=\hat{A}+\hat{BMA}\)
=>\(\hat{BMA}=39^0-18^0=21^0\)
Xét ΔMAB có \(\frac{AB}{\sin AMB}=\frac{MB}{\sin A}\)
=>\(\frac{MB}{\sin18}=\frac{80}{\sin21}\)
=>\(MB=80\cdot\frac{\sin18}{\sin21}\) ≃69(m)
Xét ΔMHB vuông tại H có \(\sin HBM=\frac{HM}{MB}\)
=>\(HM=MB\cdot\sin HBM\) ≃69*sin39≃43,4(m)
=>Chiều cao của ngọn hải đăng là khoảng 43,4 mét

a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64=8^2\)
=>AC=8(cm)
Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)
nên \(\hat{C}\) ≃37 độ
ΔABC vuông tại A
=>\(\hat{B}+\hat{C}=90^0\)
=>\(\hat{B}=90^0-37^0=53^0\)
b: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\) (2)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
\(AE\cdot AB=AH^2\)
=>\(AE=\frac{AH^2}{AB}\)
\(AF\cdot AC=AH^2\)
=>\(AF=\frac{AH^2}{AC}\)
Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>\(S_{AEHF}=AE\cdot AF=\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac{AH^4}{AH\cdot BC}=\frac{AH^3}{BC}\)


a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)
=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)
=>Hệ vô nghiệm
b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)
=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)
=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)
c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)
=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)
d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)
=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)
=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)
\(a.\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Leftrightarrow\begin{cases}6x-4y=7\left(1\right)\\ -6x+4y=-9\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
0x + 0y = -2
vậy phương trình trên vô nghiệm
\(b.\begin{cases}2x-4y=9\\ -3x-6y=-27\end{cases}\Leftrightarrow\begin{cases}6x-12y=27\left(1\right)\\ -6x-12y=-54\left(2\right)\end{cases}\)
lấy (1) - (2) ta được:
12x = 81
⇒ x = 81 : 12 = 6,75
thay x = 6,75 vào (1) ta được:
\(6\cdot6,75-12y=27\)
40,5 - 12y = 27
12y = 40,5 - 27
12y = 13,5
y = 13,5 : 12 = 1,125
kết luận: (x; y) = (6,75; 1,125)
\(c.\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Leftrightarrow\begin{cases}10x+2y=6\left(1\right)\\ 4x-2y=9\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
14x = 15
x = 15 : 14 = \(\frac{15}{14}\) (3)
thay (3) vào (1) ta được:
\(10\cdot\frac{15}{14}+2y=6\)
\(\frac{75}{7}+2y=6\)
\(2y=6-\frac{75}{7}\)
\(2y=-\frac{33}{7}\)
\(y=-\frac{33}{7}:2=-\frac{33}{7}\cdot\frac12=-\frac{33}{14}\)
kết luận: \(\left(x;y\right)=\left(\frac{15}{14};-\frac{33}{14}\right)\)
\(d.\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Leftrightarrow\begin{cases}4x-6y=-10\left(1\right)\\ -4x+6y=10\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
0x + 0y = 0
vậy hệ có vô số nghiệm

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)
=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)
=>Hệ vô nghiệm
b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)
=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)
=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)
c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)
=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)
d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)
=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)
=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)
Bài 5:
a: ĐKXĐ: x≠-2
Ta có: \(1+\frac{1}{x+2}=\frac{12}{x^3+8}\)
=>\(1+\frac{1}{x+2}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)
=>\(\frac{x^3+8}{\left(x+2\right)\left(x^2-2x+4\right)}+\frac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)
=>\(x^3+8+x^2-2x+4=12\)
=>\(x^3+x^2-2x=0\)
=>\(x\left(x^2+x-2\right)=0\)
=>x(x+2)(x-1)=0
=>\(\left[\begin{array}{l}x=0\\ x+2=0\\ x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(nhận\right)\\ x=-2\left(loại\right)\\ x=1\left(nhận\right)\end{array}\right.\)
b: ĐKXĐ: x<>2/7
Ta có: \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
=>\(\left(2x+3\right)\cdot\frac{3x+8+2-7x}{2-7x}=\left(x-5\right)\cdot\frac{3x+8+2-7x}{2-7x}\)
=>\(\left(2x+3\right)\cdot\frac{-4x+10}{2-7x}=\left(x-5\right)\cdot\frac{-4x+10}{2-7x}\)
=>\(\left(2x+3\right)\left(-4x+10\right)-\left(x-5\right)\left(-4x+10\right)=0\)
=>(-4x+10)(2x+3-x+5)=0
=>-2(2x-5)(x+8)=0
=>(2x-5)(x+8)=0
=>\(\left[\begin{array}{l}2x-5=0\\ x+8=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac52\left(nhận\right)\\ x=-8\left(nhận\right)\end{array}\right.\)
Bài 4:
a: ĐKXĐ: x∉{2;-1}
Ta có: \(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
=>\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{\left(x-2\right)\left(x+1\right)}+1\)
=>\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x-2\right)\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}\)
=>(x-2)(x+2)+3(x+1)=3+(x-2)(x+1)
=>\(x^2-4+3x+3=3+x^2-x-2\)
=>3x-1=-x+1
=>4x=2
=>\(x=\frac12\) (nhận)
b: ĐKXĐ: x∉{5;-6}
Ta có: \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)
=>\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)
=>\(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x+6\right)\left(x-5\right)}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)
=>\(\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)
=>\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
=>2x+61=23x+61
=>-21x=0
=>x=0(nhận)
Bài 3:
a: ĐKXĐ: x∉{5;-6}
Ta có: \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)
=>\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)
=>\(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x+6\right)\left(x-5\right)}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)
=>\(\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)
=>\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
=>2x+61=23x+61
=>-21x=0
=>x=0(nhận)
b: ĐKXĐ: x∉{3;-3}
Ta có: \(\frac{x^2-x}{x+3}-\frac{x_{}^2}{x-3}=\frac{7x^2-3x}{9-x^2}\)
=>\(\frac{\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{-7x^2+3x}{\left(x-3\right)\left(x+3\right)}\)
=>\(\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)=-7x^2+3x\)
=>\(x^3-3x^2-x^2+3x-x^3-3x^2+7x^2-3x=0\)
=>0x=0(luôn đúng)
Vậy: x∉{3;-3}
Bài 2:
a: ĐKXĐ: x∉{-1;2}
ta có: \(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
=>\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3+x^2-x-2}{\left(x-2\right)\left(x+1\right)}\)
=>\(\left(x+2\right)\left(x-2\right)+3\left(x+1\right)=x^2-x+1\)
=>\(x^2-4+3x+3=x^2-x+1\)
=>3x-1=-x+1
=>4x=2
=>\(x=\frac12\) (nhận)
b: ĐKXĐ: x∉{0;2}
ta có: \(\frac{5-x}{4x^2-8x}+\frac78=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
=>\(\frac{5-x}{4x\left(x-2\right)}+\frac78=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8\left(x-2\right)}\)
=>\(\frac{4\left(5-x\right)}{16x\left(x-2\right)}+\frac{7\cdot2x\cdot\left(x-2\right)}{8\cdot2x\cdot\left(x-2\right)}=\frac{8\left(x-1\right)}{8\cdot2x\cdot\left(x-2\right)}+\frac{2x}{8\cdot2x\cdot\left(x-2\right)}\)
=>4(5-x)+14x(x-2)=8(x-1)+2x
=>\(20-4x+14x^2-28x=8x-8+2x\)
=>\(14x^2-32x+20-10x+8=0\)
=>\(14x^2-42x+28=0\)
=>\(x^2-3x+2=0\)
=>(x-2)(x-1)=0
=>x=2(loại) hoặc x=1(nhận)
Bài 1:
a: ĐKXĐ: x∉{1/4;-1/4}
ta có: \(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{6x+8}{16x^2-1}\)
=>\(\frac{-3}{4x-1}-\frac{2}{4x+1}=\frac{-6x-8}{\left(4x-1\right)\left(4x+1\right)}\)
=>\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}-\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}=\frac{-6x-8}{\left(4x-1\right)\left(4x+1\right)}\)
=>-3(4x+1)-2(4x-1)=-6x-8
=>-12x-3-8x+2=-6x-8
=>-20x-1=-6x-8
=>-14x=-7
=>x=1/2(nhận)
b: ĐKXĐ: x∉{1/5;3/5}
Ta có: \(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
=>\(\frac{3}{5x-1}-\frac{2}{5x-3}=\frac{-4}{\left(5x-1\right)\left(5x-3\right)}\)
=>\(\frac{3\left(5x-3\right)}{\left(5x-1\right)\left(5x-3\right)}-\frac{2\left(5x-1\right)}{\left(5x-1\right)\left(5x-3\right)}=\frac{-4}{\left(5x-1\right)\left(5x-3\right)}\)
=>3(5x-3)-2(5x-1)=-4
=>15x-9-10x+2=-4
=>5x-7=-4
=>5x=3
=>x=3/5(loại)