K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2018

lm giúp e vs ạkhocroi

Câu 1: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).Câu 2: Cho \(a,b,c,d>0\)và \(a+b+c+d=4\). Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).Câu 3: Cho \(a,b,c,d>0\). Chứng minh rằng:\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).Câu 4: Cho \(a,b,c,d>0\). Chứng minh...
Đọc tiếp

Câu 1Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).

Câu 2: Cho \(a,b,c,d>0\)và \(a+b+c+d=4\). Chứng minh rằng:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).

Câu 3: Cho \(a,b,c,d>0\). Chứng minh rằng:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).

Câu 4: Cho \(a,b,c,d>0\). Chứng minh rằng:

\(\frac{a^4}{a^3+2b^3}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\ge\frac{a+b+c+d}{3}\).

Câu 5: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\).

Câu 6: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng: 

\(\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\ge1\).

Câu 7: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Câu 8: Cho \(a_1,a_2,...,a_{n-1},a_n>0\)và \(a_1+a_2+...+a_{n-1}+a_n=n\)với \(n\)nguyên dương. Chứng minh:

\(\frac{1}{a_1+1}+\frac{1}{a_2+1}+...+\frac{1}{a_{n-1}+1}+\frac{1}{a_n+1}\ge\frac{n}{2}\).

 

 

0
28 tháng 9 2017

moi nguoi oi hom truoc minh hoc tap hop cac so TN do thi co cua minh day nhu sau 

vd: A={xeN/3<x<9}

thi minh liet ke ra la A=4,5,6,7,8 nhung sua bai lai ko dung 

co sua nhu vay A=3,4,5,6,7,8

ko biet hay sai mong ae giup minh

30 tháng 9 2017

Áp dụng BĐT Cô-si \(ab\le\frac{\left(a+b\right)}{4}^2\)

=> \(\left(2a+b\right)\left(2c+b\right)\le\frac{4\left(a+b+c\right)^2}{4}=\left(a+b+c\right)^2\)

=> \(\frac{1}{\left(2a+b\right)\left(2c+b\right)}\ge\frac{1}{\left(a+b+c\right)^2}\)

Mấy cái kia làm tương tự cậu nhé 

Dấu "=" xảy ra khi và chỉ khi a=b=c=1

5 tháng 7 2019

\(0\le a,b,c\le1\)\(\Rightarrow\)\(\hept{\begin{cases}a-1\le0\\b-1\le0\\c-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2-a\le0\\b^2-b\le0\\c^2-c\le0\end{cases}}}\)

\(\Rightarrow\)\(\hept{\begin{cases}\left(a^2-a\right)\left(b-1\right)\ge0\\\left(b^2-b\right)\left(c-1\right)\ge0\\\left(c^2-c\right)\left(a-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2b\ge a^2+ab-a\\b^2c\ge b^2+bc-b\\c^2a\ge c^2+ca-c\end{cases}}}\)

\(\Rightarrow\)\(a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)-\left(a+b+c\right)\) (1) 

Và \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)\ge0\\\left(b-1\right)\left(c-1\right)\ge0\\\left(c-1\right)\left(a-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}ab\ge a+b-1\\bc\ge b+c-1\\ca\ge c+a-1\end{cases}}}\)

\(\Rightarrow\)\(ab+bc+ca\ge2\left(a+b+c\right)-3\) (2) 

(1), (2) \(\Rightarrow\)\(3+a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(a+b+c\right)\)

Lại có: \(\hept{\begin{cases}a\le1\\b\le1\\c\le1\end{cases}\Leftrightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\Leftrightarrow\hept{\begin{cases}a^3\le a^2\\b^3\le b^2\\c^3\le c^2\end{cases}}}\)

\(\Rightarrow\)\(3+a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\ge2\left(a^3+b^3+c^3\right)=2a^3+2b^3+2c^3\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=1;b=1;c=0\) và các hoán vị 

12 tháng 6 2020

Phùng Minh Quân ơi câu trả lời của bạn dài quá. Bạn có thể trả lời ngắn hơn mà.

5 tháng 1 2018

Áp dụng BĐT phụ:

\(3\left(a^2+a^2+b^2\right)\ge\left(2a+b\right)^2\)

P=\(\sum\dfrac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P=\sum\dfrac{a}{\sqrt{3\left(a^2+a^2+b^2\right)}+3}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\sum\dfrac{a}{\sqrt{\left(2a+b\right)^2}+a+b+c}=\sum\dfrac{a}{3a+2b+c}\)

Xét M=\(\sum\dfrac{a}{3a+2b+c}\)

\(3-3M=\sum\dfrac{2b+c}{3a+2b+c}\)

\(\Rightarrow\)\(3-3M=\sum\dfrac{\left(2b+c\right)^2}{\left(3a+2b+c\right)\left(2b+c\right)}\ge\)\(\dfrac{\left(3a+3b+3c\right)^2}{\sum\left(3a+2b+c\right)\left(2b+c\right)}\)

\(\sum\left(3a+2b+c\right)\left(2b+c\right)=5a^2+5b^2+5c^2+13ab+13bc+13ac=5\left(a+b+c\right)^2+3\left(ab+bc+ac\right)\le5\left(a+b+c\right)^2+\left(a+b+c\right)^2\)

\(\Rightarrow\)\(3-3M\ge\dfrac{\left(3a+3b+3c\right)^2}{6\left(a+b+c\right)^2}\ge\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrow\)\(M\le\dfrac{1}{2}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\dfrac{1}{2}\Rightarrow P\le\dfrac{\sqrt{3}}{2}\)

5 tháng 1 2018

Dấu \(=\) xảy ra khi và chỉ khi x=y=z=1

26 tháng 8 2020

lớn hơn hay = thế ạ

26 tháng 8 2020

Ta có :

\(a^2b+b^2c+c^2a\ge\frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)

\(\Leftrightarrow\left(a^2b+b^2c+c^2a\right)\left(1+2a^2b^2c^2\right)\ge9a^2b^2c^2\)

\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^{3v}+2a^3b^2c^4\ge3a^2b^2c^2\left(a+b+c\right)\)(*)

Áp dụng BĐT AM-GM ta có:

\(a^2b+a^4b^3c^2+a^3b^2c^4\ge3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)

\(b^2c+a^2b^4c^3+a^4b^3c^2\ge3a^2b^3c^2\)

\(c^2a+a^3b^2c^4+a^2b^4c^4\ge3a^2b^2c^3\)

Cộng theo vế

\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\ge3a^2b^2c^2\left(a+b+c\right)\)

Vậy $(*)$ đúng

Do đó ta có đpcm

#Cừu

28 tháng 11 2019

Do a ≤ 1⇒a2 ≤1

(1−a2)(1−b) ≤0 ⇒1+a2b2 ≥ a2+b

0 ≤ a , b ≤ 1 ⇒a2≥ a3 ,b2≥ b3

⇒ 1+a2b2 ≥ a3 + b3

Tương tự rồi cộng lại ta có được điều phải chứng minh