Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(y=\dfrac{1-sin^24x}{5}=\dfrac{cos^24x}{5}\)
\(cos4x\in\left[-1;1\right]\Rightarrow cos^24x\in\left[0;1\right]\Rightarrow y\in\left[0;\dfrac{1}{5}\right]\Rightarrow\left\{{}\begin{matrix}y_{min}=0\\y_{max}=\dfrac{1}{5}\end{matrix}\right.\)
6.
\(y=sinx+cosx+2=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+2\)
\(sin\left(x+\dfrac{\pi}{4}\right)\in\left[-1;1\right]\Rightarrow y=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+2\in\left[-\sqrt{2}+2;\sqrt{2}+2\right]\)
\(\Rightarrow y_{min}=-\sqrt{2}+2\)
\(y_{max}=\sqrt{2}+2\)
Đặt độ dài cạnh của hình lập phương là a
Ta có : \(\overrightarrow{AG}.\overrightarrow{BE}=\left(\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AE}\right)\left(\overrightarrow{AE}-\overrightarrow{AB}\right)\)
⇒ \(\overrightarrow{AG}.\overrightarrow{BE}=\overrightarrow{AB}.\overrightarrow{AE}-AB^2+\overrightarrow{AD}.\overrightarrow{AE}-\overrightarrow{AD}.\overrightarrow{AB}+AE^2-\overrightarrow{AE}.\overrightarrow{AB}\)
Các tích vô hướng ở vế phải bằng 0 và AE = AB
⇒ \(\overrightarrow{AG}.\overrightarrow{BE}=0\) ⇒ AG ⊥ BE, tức góc giữa hai đường thẳng này bằng 900
- Mọi số nguyên n đều có số đối của nó là -n
- Do đó, trong biểu thức \(k2\pi\) nếu em thay k bằng số đối của nó là -k thì ta được \(-k2\pi\) thôi
f/kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk