K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(=\dfrac{1}{\sqrt{2}}\cdot\left(\sqrt{2x-2\sqrt{2x-1}}-\sqrt{2x+2\sqrt{2x-1}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{2x-1}-1\right|-\left|\sqrt{2x-1}+1\right|\right)\)

TH1: x>=1

\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{2x-1}-1-\sqrt{2x-1}-1\right)=-\sqrt{2}\)

TH2: 1/2<=x<1

\(A=\dfrac{1}{\sqrt{2}}\left(1-\sqrt{2x-1}-\sqrt{2x-1}-1\right)=-\sqrt{4x-2}\)

2: 

\(=\sqrt{x-1+6\sqrt{x-1}+9}-\sqrt{x-2-2\sqrt{x-2}+1+3}\)

\(=\sqrt{x-1}+3-\sqrt{\left(\sqrt{x-2}-1\right)^2+3}\)

11 tháng 10 2016

Bạn tự tìm điều kiện xác định nhé :)

\(Q=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{3}{\sqrt{x}+3}:\frac{9-x+x-4\sqrt{x}+4-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{3}{\sqrt{x}+3}:\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{\sqrt{x}-2}=\frac{3}{\sqrt{x}-2}\)

25 tháng 8 2019

a.\(DK:\frac{2}{3}\le x< 4\)

b.\(DK:x>\frac{1}{2},x\ne\frac{5}{2}\) 

c.\(DK:x\le-3\)

25 tháng 8 2019

Bạn MaiLink ơi, bạn có thể ghi rõ ra các bước làm được không? mình không hiểu lắm. cảm ơn bạn

22 tháng 4 2023

Mình làm câu 2 trước nhé:

đkxđ: \(\dfrac{1}{2}< x\le2\)

 Áp dụng BĐT Bunyakovsky, ta có \(VT=\left(1.\sqrt{x}+1.\sqrt{2-x}\right)\)\(\le\sqrt{\left(1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{2-x}\right)^2\right]}\) \(=2\). ĐTXR \(\Leftrightarrow x=2-x\Leftrightarrow x=1\) (nhận). Vậy \(VT\le2\)     (1)

 Mặt khác, ta có \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-\left(2x-1\right)\ge0\) \(\Leftrightarrow\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)\ge0\). Do \(x+\sqrt{2x-1}>0\) nên điều này có nghĩa là \(x\ge\sqrt{2x-1}\) \(\Rightarrow\dfrac{x}{\sqrt{2x-1}}\ge1\) \(\Leftrightarrow\dfrac{2x}{\sqrt{2x-1}}\ge2\) hay \(VP\ge2\)  (2). ĐTXR \(\Leftrightarrow x=1\) (nhận)

 Từ (1) và (2) suy ra \(VT\le2\le VP\), do đó pt đã cho \(\Leftrightarrow VT=VP\) \(\Leftrightarrow x=1\) 

 Vậy pt đã cho có nghiệm duy nhất \(x=1\)

22 tháng 4 2023

Không=))