K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2019

+)\(\left(x-1\right)^2+2=\left(x-2\right)^2\)

\(\Leftrightarrow\left(x-2\right)^2-\left(x-1\right)^2=2\)

\(\Leftrightarrow\left(x-2-x+1\right)\left(x-2+x-1\right)=2\)

\(\Leftrightarrow-1\left(2x-3\right)=2\)

\(\Leftrightarrow2x-3=-2\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy tập nghiệm của pt 1 là \(S=\left\{\frac{1}{2}\right\}\)

+)\(2x^3-x^2+2x-1=0\)

\(\Leftrightarrow x^2\left(2x-1\right)+\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x^2=-1\left(\text{loại}\right)\end{cases}}}\)

Vậy tập nghiệm của pt 2 là \(S=\left\{\frac{1}{2}\right\}\)

Xét thấy 2 pt có tập nghiệm như nhau nên 2 pt này tương đương

26 tháng 1 2019

*\(\left(x-1\right)^2+2=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-2x+1+2=x^2-4x+4\)

\(\Leftrightarrow x^2-x^2-2x+4x=-1-2+4\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

Vậy phương trình có tập nghiệm S= { 1/2 }     (1)

*\(2x^3-x^2+2x-1=0\)

\(\Leftrightarrow x^2\left(2x-1\right)+\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow2x-1=0\) ( vì x2 + 1 luôn khác 0 với mọi x )

\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

Vậy phương trình có tập nghiệm là S = {1/2}    (2)

Từ (1) và (2) suy ra : 2 phương trình đã cho tương đương nhau 

23 tháng 4 2019

(x-1)(2x-1)=2x2-x-2x+1=2x2-3x+1

=>m=2

1:

a: x^3+x^2-3x-3=0

=>x^2(x+1)-3(x+1)=0

=>(x+1)(x^2-3)=0

=>x=-1 hoặc x^2-3=0

=>\(S_1=\left\{-1;\sqrt{3};-\sqrt{3}\right\}\)

2x+3=1

=>2x=-2

=>x=-1

=>S2={-1}

=>Hai phương trình này không tương đương.

1: \(\dfrac{1}{\left|x+1\right|}+\dfrac{1}{x+2}=3\left(1\right)\)

TH1: x>-1

Pt sẽ là \(\dfrac{1}{x+1}+\dfrac{1}{x+2}=3\)

=>\(\dfrac{x+2+x+1}{\left(x+1\right)\left(x+2\right)}=3\)

=>3(x+1)(x+2)=2x+3

=>3x^2+9x+6-2x-3=0

=>3x^2+7x+3=0

=>\(\left[{}\begin{matrix}x=\dfrac{-7-\sqrt{13}}{6}\left(loại\right)\\x=\dfrac{-7+\sqrt{13}}{6}\left(nhận\right)\end{matrix}\right.\)

TH2: x<-1

Pt sẽ là:

\(\dfrac{-1}{x+1}+\dfrac{1}{x+2}=3\)

=>\(\dfrac{-x-2+x+1}{\left(x+1\right)\left(x+2\right)}=3\)

=>\(\dfrac{-1}{\left(x+1\right)\left(x+2\right)}=3\)

=>-1=3(x+1)(x+2)

=>3(x^2+3x+2)=-1

=>3x^2+9x+6+1=0

=>3x^2+9x+7=0

Δ=9^2-4*3*7

=81-84=-3<0

=>Phương trình vô nghiệm

Vậy: \(S_3=\left\{\dfrac{-7+\sqrt{13}}{6}\right\}\)

x^2+x=0

=>x(x+1)=0

=>x=0 hoặc x=-1

=>S4={0;-1}

=>S4<>S3

=>Hai phương trình này không tương đương

10 tháng 4 2020

Mỗi câu mình sẽ chia làm 2 phần( VT là ( 1 ) ,VP là ( 2 )   nha bạn !!!

a) 

(1) (x -1)2 + 2 = (x-2)2 

<=> x2 -2x + 1 + 2 =x2 - 4x + 4 

<=>         2x            = 1 

<=>           x              = 1/2 

(2) 2x3 -x2 + 2x - 1 = 0

<=> ( x - \(\frac{1}{2}\))               = 0 

<=>x                      = 1/2 

Vậy 2 PT trên tương đương 

d) 

(1) x + 1 = x là phương trình vô số no 

(2) x3 + 1 = 0 là PT vô no 

=> 2 pt trên không tương đương 

c) và b) thì ...

1: Hai phương trình này tương đương vì có chung tập nghiệm S={3}

2: Hai phương trình này không tương đương vì pt(1) có tập nghiệm là S={0}, còn pt(2) có tập nghiệm là S={0;-3}

4 tháng 2 2022


4x−12=02)4x-12=0

⇒4x=12⇒4x=12

⇒x=3⇒x=3

________________________________________________

5x=155x=15

⇒x=3⇒x=3

Vậy hai cặp phương trình này có tương đương với nhau.


7x−1=−14)7x-1=-1

⇒7x=0⇒7x=0

⇒x=0⇒x=0

________________________________________________

2x(x+3)=02x(x+3)=0

TH1:2x=0TH1:2x=0

⇒x=0⇒x=0

TH2:x+3=0TH2:x+3=0

⇒x=−3⇒x=-3

Vậy hai cặp phương trình này không tương đương với nhau.

 

13 tháng 1 2019

14 tháng 1 2022

\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)

\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)

\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)

\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)

\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)

\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)

14 tháng 1 2022

\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)

\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)

\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)

\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)