Các cao nhân...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Coi số 4 và số 5 là một số, ta sẽ lập số tự nhiên có 4 chữ số khác nhau mà trong đó có 1 số gồm 2 chữ số là 4 và 5.

Số cách chọn 3 chữ số khác nhau còn lại là: \(C_7^3=35\) (cách)

Số cách xếp 4 số vào 4 vị trí là 4!=24(cách)

Số cách xếp hai chữ số 4 và 5 là 2(cách)

Tổng số cách là: \(35\cdot24\cdot2=1680\) (cách)

15 tháng 8

Bài 2:

Gọi vận tốc lúc đi là \(v\) (km/h), vận tốc lúc về là \(1,2 v\).
Quãng đường mỗi lượt là 120 km.

– Thời gian đi: \(\frac{120}{v}\)
– Thời gian về: \(\frac{120}{1,2 v} = \frac{100}{v}\)

Tổng thời gian đi và về bằng 4,4 giờ nên:

\(\frac{120}{v}+\frac{100}{v}=4,4\Rightarrow\frac{220}{v}=4,4\Rightarrow v=\frac{220}{4,4}=50(\text{km}/\text{h})\)

=> Vậy vận tốc lúc đi là 50 km/h, vận tốc lúc về là 60 km/h.

Bài 1b:

\(\frac{2}{3 x - 1} + \frac{1}{x} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} (Đ\text{KX}Đ:\&\text{nbsp}; x \neq 0 , \textrm{ }\textrm{ } 3 x \neq 1 )\)

Quy đồng:

\(\frac{2 x + \left(\right. 3 x - 1 \left.\right)}{x \left(\right. 3 x - 1 \left.\right)} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} \Rightarrow \frac{5 x - 1}{x \left(\right. 3 x - 1 \left.\right)} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} \Rightarrow 5 x - 1 = 4 \Rightarrow 5 x = 5 \Rightarrow x = 1\)

Kiểm tra ĐKXĐ: \(x = 1\) thỏa mãn.

=> Vậy nghiệm của phương trình là \(x = 1\).

15 tháng 8

tukgkdu

tungtungtungsahur




Bài 4:

a: ΔCAB vuông tại C

=>\(\hat{CAB}+\hat{CBA}=90^0\)

=>\(\hat{CBA}=90^0-70^0=20^0\)

Xét ΔCBA vuông tại C có \(\sin CBA=\frac{CA}{AB}\)

=>\(CA=AB\cdot\sin CBA=10\cdot\sin20\) ≃3,4(dm)

ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=AB^2-CA^2\)

=>\(CB=\sqrt{AB^2-AC^2}\) ≃9,4(dm)

b: Xét ΔABC vuông tại C có \(cosA=\frac{CA}{AB}\)

Xét ΔCHA vuông tại H có \(cosA=\frac{AH}{AC}\)

Xét ΔCHB vuông tại H có \(\sin B=\frac{CH}{CB}\)

Xét ΔCAB vuông tại C có \(\sin B=\frac{AC}{AB}\)

\(\sin B\cdot cosA=\frac{AC}{AB}\cdot\frac{AH}{AC}=\frac{AH}{AB}\)

Bài 5:

Xét ΔMAB có \(\hat{MBH}\) là góc ngoài tại đỉnh B

nên \(\hat{MBH}=\hat{A}+\hat{BMA}\)

=>\(\hat{BMA}=39^0-18^0=21^0\)

Xét ΔMAB có \(\frac{AB}{\sin AMB}=\frac{MB}{\sin A}\)

=>\(\frac{MB}{\sin18}=\frac{80}{\sin21}\)

=>\(MB=80\cdot\frac{\sin18}{\sin21}\) ≃69(m)

Xét ΔMHB vuông tại H có \(\sin HBM=\frac{HM}{MB}\)

=>\(HM=MB\cdot\sin HBM\) ≃69*sin39≃43,4(m)

=>Chiều cao của ngọn hải đăng là khoảng 43,4 mét

15 tháng 8

em cảm ơn a nhiều ạ

Bài 3:

a: \(\left(2x+1\right)\left(x^2+2\right)=0\)

\(x^2+2\ge2>0\forall x\)

nên 2x+1=0

=>2x=-1

=>\(x=-\frac12\)

b: \(\left(x^2+4\right)\left(7x-3\right)=0\)

\(x^2+4\ge4>0\forall x\)

nên 7x-3=0

=>7x=3

=>\(x=\frac37\)

c: \(\left(x^2+x+1\right)\left(6-2x\right)=0\)

\(x^2+x+1=x^2+x+\frac14+\frac34=\left(x+\frac12\right)^2+\frac34\ge\frac34>0\forall x\)

nên 6-2x=0

=>2x=6

=>x=3

d: \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)

\(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\)

nên 8x-4=0

=>8x=4

=>\(x=\frac48=\frac12\)

Bài 4:

a: \(\left(x-2\right)\left(3x+5\right)=\left(2x-4\right)\left(x+1\right)\)

=>(x-2)(3x+5)=(x-2)(2x+2)

=>(x-2)(3x+5-2x-2)=0

=>(x-2)(x+3)=0

=>\(\left[\begin{array}{l}x-2=0\\ x+3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\\ x=-3\end{array}\right.\)

b: \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

=>(2x+5)(x-4)-(x-5)(4-x)=0

=>(2x+5)(x-4)+(x-5)(x-4)=0

=>(x-4)(2x+5+x-5)=0

=>3x(x-4)=0

=>x(x-4)=0

=>\(\left[\begin{array}{l}x=0\\ x-4=0\end{array}\right.=>\left[\begin{array}{l}x=0\\ x=4\end{array}\right.\)

c: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

=>(3x+1)(3x-1)=(3x+1)(2x-3)

=>(3x+1)(3x-1)-(3x+1)(2x-3)=0

=>(3x+1)(3x-1-2x+3)=0

=>(3x+1)(x+2)=0

=>\(\left[\begin{array}{l}3x+1=0\\ x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac13\\ x=-2\end{array}\right.\)

d: \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)

=>\(2\left(3x+1\right)^2=\left(3x+1\right)\left(x-2\right)\)

=>\(\left(3x+1\right)\left(6x+2-x+2\right)=0\)

=>(3x+1)(5x+4)=0

=>\(\left[\begin{array}{l}3x+1=0\\ 5x+4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac13\\ x=-\frac45\end{array}\right.\)

e: \(27x^2\left(x+3\right)-12\left(x^2+3x\right)=0\)

=>\(27x^2\left(x+3\right)-12x\left(x+3\right)=0\)

=>3x(x+3)(9x-4)=0

=>x(x+3)(9x-4)=0

=>\(\left[\begin{array}{l}x=0\\ x+3=0\\ 9x-4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-3\\ x=\frac49\end{array}\right.\)

f: \(16x^2-8x+1=4\left(x+3\right)\left(4x-1\right)\)

=>\(\left(4x-1\right)^2=\left(4x+12\right)\left(4x-1\right)\)

=>(4x+12)(4x-1)-\(\left(4x-1\right)^2=0\)

=>(4x-1)(4x+12-4x+1)=0

=>13(4x-1)=0

=>4x-1=0

=>4x=1

=>\(x=\frac14\)

Bài 3:

a: ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của BC

Xét ΔBOD có

BI là đường cao

BI là đường trung tuyến

Do đó: ΔBOD cân tại B

=>BO=BD

ma BO=OD

nên BO=BD=OD

=>ΔBOD đều

=>\(\hat{BOD}=\hat{BDO}=\hat{OBD}=60^0\)

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>\(\hat{BAD}+\hat{BDA}=90^0\)

=>\(\hat{BAD}=90^0-60^0=30^0\)

Xét ΔAIB vuông tại I và ΔAIC vuông tại I có

AI chung

IB=IC

Do đó: ΔAIB=ΔAIC

=>AB=AC

ΔAIB=ΔAIC

=>\(\hat{IAB}=\hat{IAC}\)

=>AI là phân giác của góc BAC

=>\(\hat{BAC}=2\cdot\hat{BAD}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\hat{BAC}=60^0\)

nên ΔABC đều

b: ΔOBD đều

=>BD=OB=R

ΔABD vuông tại B

=>\(BA^2+BD^2=AD^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt3\)

=>\(BA=AC=BC=R\sqrt3\)