Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{45}{15}=3\)
a=9, b=15, c=21
b) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{c-a}{7-3}=\frac{20}{4}=5\)
a= 15; b=25; c= 35
Các cạnh `x,y,z` tỉ lệ với `2,4,5 => x:y:z=2:4:5 <=> x/2=y/4=z/5`
Tổng độ dài của cạnh lớn nhất và nhỏ nhất hơn cạnh còn lại `20cm`
`=> z+x=y+20<=>x-y+z=20`
Áp dụng tính chất của dãy tỉ số bằng nhau:
`x/2=y/4=z/6=(x-y+z)/(2-4+6)=20/4=5`
`=>x=2.5=10`
`y=4.5=20`
`z=5.5=25`
Vậy...
Gọi 33 cạnh của tam giác đó lần lượt là x;y;z(cm,0<x<y<z)x;y;z(cm,0<x<y<z).
Theo bài ra ta có: x/2=y/4=z/5 và x+z−y=20
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/2=y/4=z/5=x+z−y/2+5−4=20/3
x/2=20/3⇒x=403(tm)
y/4=20/3⇒y=80/3(tm)
z/5=20/3⇒z=100/3(tm)
Vậy độ dài 33 cạnh của tam giác đó lần lượt là: 403cm;803cm;1003cm403cm;803cm;1003cm.
tick cho mình nha!
a, Gọi độ dài các cạnh của tam giác đó là a,b,c ( a,b,c thuộc N*,cm)
Theo đề ra: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và a+b+c=45 (cm)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{45}{15}=3\)
\(\frac{a}{3}=3\Rightarrow a=9\)
\(\frac{b}{5}=3\Rightarrow b=15\)
\(\frac{c}{7}=3\Rightarrow c=21\)
Vậy độ dài các cạnh của tam giác đó là: 9cm, 15cm,21cm
b,Gọi độ dài các cạnh của tam giác đó là a,b,c ( a,b,c thuộc N*,cm)
cạnh lớn nhất là c, cạnh nhỏ nhất là a
Theo đề ra: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và \(c+a-b=20\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{c+a-b}{7+3-5}=\frac{20}{5}=4\)
\(\frac{a}{3}=4\Rightarrow a=12\)
\(\frac{b}{5}=4\Rightarrow b=20\)
\(\frac{c}{7}=4\Rightarrow c=28\)
Vậy độ dài các cạnh của tam giác đó là: 12cm,20cm,28cm