Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a}{5}=\frac{b}{-4}=\frac{a-b}{5-\left(-4\right)}=\frac{a-2b}{5-2\left(-4\right)}\)
Mà a - 2b = 26
\(\Rightarrow\frac{a-b}{5-2\left(-4\right)}=\frac{26}{13}=2\)
\(\Rightarrow\frac{a}{5}=2\)
\(a=2.5=10\)
\(\Rightarrow\frac{b}{-4}=2\)
\(b=2.\left(-4\right)=-8\)
Vậy a = 10
b = -8
Có : \(\frac{b}{-4}=\frac{2b}{-8}\)
Do \(\frac{a}{5}=\frac{b}{-4}\Rightarrow\frac{a}{5}=\frac{2b}{-8}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{5}=\frac{2b}{-8}=\frac{a-2b}{5-\left(-8\right)}=\frac{26}{13}=2\)
\(\Rightarrow\hept{\begin{cases}a=5\cdot2=10\\2b=-8\cdot2=-16\Rightarrow b=\frac{-16}{2}=-8\end{cases}}\)
f(x)=9x3-1/3x+3x2-3x+1/3x2-1/9x3-3x2-9x+27+3x
= 9x3-1/9x3+3x2+1/3x2-3x2-1/3-3x-9x+3x+27
= 80/9x3+1/3x2-28/3x+27
Hình như bạn nhập sai đề bài rùi , thôi mik sửa theo cách mik thử
Nếu \(\left(\frac{1}{2}\right)^{2x}+1=\frac{1}{8}\)
Ta có: \(\left(\frac{1}{2}\right)^{2x}=-\frac{7}{8}\)
mà \(\left(\frac{1}{2}\right)^{2x}\ge0\forall x;-\frac{7}{8}< 0\)
\(\Rightarrow2x\in\varnothing\Rightarrow x\in\varnothing\)
\(E=\dfrac{98:\left(\dfrac{4}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\left(\dfrac{27}{25}-\dfrac{2}{25}\right)\cdot\dfrac{7}{4}}{\left(\dfrac{59}{9}-\dfrac{13}{4}\right)\cdot\dfrac{36}{17}}\\ E=\dfrac{98}{\dfrac{3}{5}}+\dfrac{\dfrac{7}{4}}{\dfrac{119}{36}\cdot\dfrac{36}{17}}\\ E=\dfrac{490}{3}+\dfrac{\dfrac{7}{4}}{7}=\dfrac{490}{3}+\dfrac{1}{4}=\dfrac{1963}{12}\)
bạn ơi chỗ kia mik nhìn hơi loạn tí bạn giải thích giúp mik với
B = 5|1 - 4x| - 1
Ta có: 5|1 - 4x| \(\ge\)0\(\forall\)x
=> 5|1 - 4x| - 1 \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 1 - 4x = 0 <=> x = 1/4
vậy MinB = -1 tại x = 1/4
E = 5 - |2x - 1|
Ta có: |2x - 1| \(\ge\)0 \(\forall\)x
=> 5 - |2x - 1| \(\le\)5 \(\forall\)x
Dấu "=" xảy ra <=> 2x - 1 = 0 <=> x = 1/2
Vậy MaxE = 5 tại x = 1/2
P = \(\frac{1}{\left|x-2\right|+3}\)
Ta có: |x - 2| \(\ge\)0 \(\forall\)x
=> |x - 2| + 3 \(\ge\)3 \(\forall\)x
=> \(\frac{1}{\left|x-2\right|+3}\le\frac{1}{3}\forall x\)
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MaxP = 1/3 tại x = 2
1> Theo de bai, ta co \(452-32⋮a\)
\(\Rightarrow420⋮a\)(1)
\(321-21⋮3\)
\(\Rightarrow300⋮a\)(2)
Tu (1)(2) \(\Rightarrow a\in U\left(420,300\right)\)sao cho\(a\in N\)
\(a=60\)
2> Ta co \(\left(3^{15}\cdot4+5\cdot3^{15}\right)\div3^{15}\)
\(\Rightarrow3^{15}\cdot\left(4+5\right)\div3^{15}\)
\(=9\)
1/2! +2/3! +3/4! +... + 99/100!
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!)
=1 - 1/100! <1
1/2! +2/3! +3/4! +... + 99/100!
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!)
=1 - 1/100! <1
ĐKXĐ: \(x\ne0\)
\(\dfrac{3}{5}-\dfrac{1}{4}=\dfrac{1}{10x}-\dfrac{1}{2}\\ \dfrac{17}{20}=\dfrac{1}{10x}\)
\(\Leftrightarrow170x=20\\ \Leftrightarrow x=\dfrac{20}{170}=\dfrac{2}{17}\left(thõa\:mãn\right)\)
vậy phương trình có tập nghiệm là S={2/17}