Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi CF là phân giác của góc C=> gACF=gBCF.
Ta lại có gBAC=1/2 gACB => g.BAC =g.ACF (=1/2g.ACB)=> Tam giác AFC cân tại F.
Vẽ FE vuông góc với AC(E thuộc AC). Tam giác AFC cân tại F => EA=EC=1/2AC mà AC=2BC => EC=BC.
Xét tam giác BCF và tam giác ECF, ta có:
EC=BC
g.ECF =g.BCF(CF là phân giác của g.ACB)
FC chung
Do đó: tgBCF =tgECF(c.g.c) => g.ABC=g.CEF=90o
Vậy tam giác ABC vuông tại B.
b: Xét (A) có
CH,CE là tiếp tuyến
=>CH=CE
Xét (A) có
BH,BD là tiếp tuyến
=>BH=BD
BC=BH+CH
=>BC=BD+CE
c: Xét tứ giác AHCE có
góc AHC+góc AEC=180 độ
=>AHCE nội tiếp
a/ Ta có
IH vuông góc AB => ^AHI = 90
IK vuông góc AD => ^AKI = 90
=> H và K cùng nhìn AI dưới hai góc bằng nhau => AHIK là tứ giác nội tiếp
b/ Xét tam giác ADI và tam giác BCI có
^AID=^BIC (góc đối đỉnh)
sđ ^DAC = sđ ^DBC = 1/2 sđ cung CD (góc nội tiếp) => ^DAC=^DBC
=> tg ADI đồng dạng tg BCI
=> \(\frac{IA}{IB}=\frac{ID}{IC}\Rightarrow IA.IC=IB.ID\)
c/
Xét tứ giác nội tiếp AHIK có
^HIK = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (1)
^DAC = ^KHI (2 góc nội tiếp chắn cùng 1 cung) (2)
Xét tứ giác nội tiếp ABCD có
^BCD = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (3)
^DAC = ^DBC (hai góc nội tiếp chắn cùng 1 cung) (4)
Xét hai tam giác HIK và tam giác BCD
Từ (1) và (3) => ^HIK = ^BCD
Từ (2) và (4) => ^KHI = ^DBC
=> tam giác HIK đồng dạng với tam giác BCD
1. Chứng minh cho bốn đỉnh của tứ giác cách đều một điểm nào đó.
2. Chứng minh tứ giác có tổng 2 góc đối bằng 1800.
3. Chứng minh từ hai đỉnh cùng kề một cạnh cùng nhìn một cạnh dưới hai góc bằng nhau.
4. Nếu một tứ giác có tổng số đo hai góc đối bằng thì tứ giác đó nội tiếp được trong một đường tròn.
5. Tứ giác có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó thì nội tiếp được trong một đường tròn.
6. Chứng minh bằng phương pháp phản chứng.
( Trên đây chỉ là một số cách còn nhiều cách khác bn tự tìm hiểu nha! )
Thank bn nha!!!!