K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: \(\widehat{aMP}=\widehat{MPQ}\)

mà hai góc này là hai góc ở vị trí so le trong

nên a//b

7 tháng 10 2021

a) vì góc m = 60° (gt)

góc p =60° (gt)

=> góc m = góc p

Mà hai góc này ở vị trí soi le trong

=> a//b

b) vì a//b (cmt)

=> góc Q + x = 180°( trong cùng phía)

Mà góc Q = 80°(gt)

=> x= 180°- 80° = 100°

 

19 tháng 10 2017

chẳng nhìn thấy j cả!oho Thông cảm mk bị cận!gianroi

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

BD=CE
\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: AB=AC

hay ΔABC cân tại A

b: XétΔABC có 

AD là đường cao

CH là đường cao

AD cắt CH tại D

Do đó: D là trực tâm của ΔABC

=>BD vuông góc với AC

17 tháng 2 2017

Ban chi mk cach tim gia tri nho nhat / lon nhat cho mk nha

17 tháng 2 2017

sao bn có hay zợlolang

15 tháng 10 2017

xinh nhỉ banh

22 tháng 9 2021

bn làm đúng rùi

22 tháng 9 2021

5 đúng ko

3 tháng 5 2017

Ôn tập toán 7

3 tháng 5 2017

Ôn tập toán 7

23 tháng 3 2017

\(\left\{{}\begin{matrix}\widehat{CBA}< 135\Rightarrow\widehat{ABD}>45\Rightarrow\widehat{BAD}< 45\Rightarrow BD< DA\\\widehat{ACD}< 45\Rightarrow\widehat{CAD}>45\Rightarrow AD< CD\\\end{matrix}\right.\)

24 tháng 3 2017

Làm toán hình thì phải lập luận rõ ràng, trong toán hình cái điểm lập luận là cao nhất, nếu không có thì 0 điểm, chế làm như vậy có phải đẩy người ta xuống 0 điểm không? Làm ơn bỏ ngay cái ngoặc tròn (và) của lớp 8 đi!

15 tháng 2 2017

cho mik bản dịch và cách làm nha

15 tháng 2 2017

nhưng gửi vào link mik nhé ko thì bọn bn mik sẽ học luôn mấthehe

1 tháng 3 2017

\(\frac{B}{A}=\frac{2^2+4^2+6^2+...+200^2}{1^2+2^2+...+100^2}=\frac{\left(1.2\right)^2+\left(2.2\right)^2+...+\left(100.2\right)^2}{1^2+2^2+...+100^2}\)

\(=\frac{1^2.2^2+2^2.2^2+...+100^2+2^2}{1^2+2^2+...+100^2}\)

\(=\frac{\left(1^2+2^2+...+100^2\right).2^2}{1^2+2^2+100^2}\)

\(=2^2=4\)

Vậy \(\frac{B}{A}=4\)

1 tháng 3 2017

Sửa lại: ( tại nhìn bé quá, tưởng mũ 3 -> mũ 2 )

\(\frac{B}{A}=\frac{2^3+4^3+6^3+...+200^3}{1^3+2^3+...+100^3}\)

\(\Rightarrow\frac{B}{A}=\frac{\left(1.2\right)^3+\left(2.2\right)^3+...+\left(100.2\right)^3}{1^3+2^3+...+100^3}\)

\(\Rightarrow\frac{B}{A}=\frac{1^3.2^3+2^3.2^3+...+100^3.2^3}{1^3+2^3+...+100^3}\)

\(\Rightarrow\frac{B}{A}=\frac{\left(1^3+2^3+...+100^3\right)2^3}{1^3+2^3+...+100^3}\)

\(\Rightarrow\frac{B}{A}=2^3=8\)

Vậy \(\frac{B}{A}=8\)