K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

FGHFFGGDJJG

thiếu dữ liệu đề bài bạn ơi

bài này k có số kết thúc thì k giải dc

13 tháng 7 2018

\(\frac{3}{7.10}+\frac{3}{10.13}+....+\frac{3}{100.103}\)

\(=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{100}-\frac{1}{103}\)

\(=\frac{1}{7}-\frac{1}{103}\)

\(=\frac{96}{721}\)

\(\frac{2}{7.10}+\frac{2}{10.13}+...+\frac{2}{100.103}\)

\(=\frac{2}{3}\left(\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(=\frac{2}{3}\left(\frac{1}{7}-\frac{1}{103}\right)\)

\(=\frac{2}{3}.\frac{96}{721}\)

\(=\frac{64}{721}\)

26 tháng 7 2018

A, 910 -4/910- 5

= (9-4/9)10- 5

= 77/910 - 5

910 - 2/910 - 3

=( 9-2/9 )10 - 3

= 79/910 -3

vì 77/9

26 tháng 7 2018

a) Ta có: \(1-\frac{9^{10}-4}{9^{10}-5}=\frac{-1}{9^{10}-5}\)

                \(1-\frac{9^{10}-2}{9^{10}-3}=\frac{-1}{9^{10}-3}\)

Vì     \(\frac{-1}{9^{10}-5}< \frac{-1}{9^{10}-3}\Rightarrow1-\frac{9^{10}-4}{9^{10}-5}< 1-\frac{9^{10}-2}{9^{10}-3}\)

\(\Rightarrow\frac{9^{10}-4}{9^{10}-5}>\frac{9^{10}-2}{9^{10}-3}\).

b) Ta có:    \(1-\frac{2.7^{10}-1}{7^{10}}=\frac{7^{10}+1}{7^{10}}\)

                  \(1-\frac{2.7^{10}+1}{7^{10}+1}=\frac{7^{10}}{7^{10}+1}\)

Vì   \(\frac{7^{10}+1}{7^{10}}>\frac{7^{10}}{7^{10}+1}\Rightarrow1-\frac{2.7^{10}-1}{7^{10}}>1-\frac{2.7^{10}+1}{7^{10}+1}\)

\(\Rightarrow\frac{2.7^{10}-1}{7^{10}}< \frac{2.7^{10}+1}{7^{10}+1}\)

I don't now

or no I don't

..................

sorry

20 tháng 5 2022

\(A=\dfrac{7}{10}+\dfrac{7}{10^2}+\dfrac{7}{10^3}+...+\dfrac{7}{10^{2011}}\)

\(\Rightarrow10A=7+\dfrac{7}{10}+\dfrac{7}{10^2}+...+\dfrac{7}{10^{2010}}\)

\(\Rightarrow10A-A=7+\dfrac{7}{10}+\dfrac{7}{10^2}+...+\dfrac{7}{10^{2010}}-\left(\dfrac{7}{10}+\dfrac{7}{10^2}+\dfrac{7}{10^3}+...+\dfrac{7}{10^{2011}}\right)\)

\(\Rightarrow9A=7-\dfrac{7}{10^{2011}}\)

\(\Rightarrow A=\dfrac{7}{9}.\left(1-\dfrac{1}{10^{2011}}\right)\)

 

 

13 tháng 7 2018

\(A=\)\(\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\)

\(A=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\)

\(A=\frac{1}{7}-\frac{1}{103}\)

\(A=\frac{96}{721}\)

\(B=\frac{2}{7.10}+\frac{2}{10.13}+...+\frac{2}{100.103}\)

\(B=2\left(\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{100.103}\right)\)

\(3B=2.3\left(\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{100.103}\right)\)

\(3B=2\left(\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\right)\)

\(3B=2\left(\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(3B=2\left(\frac{1}{7}-\frac{1}{103}\right)\)

\(3B=2.\frac{96}{721}\)

\(3B=\frac{192}{721}\)

\(\Rightarrow B=\frac{192}{721}:3\)

    \(B=\frac{64}{721}\)

13 tháng 7 2018

\(A=\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\)

\(A=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\)

\(A=\frac{1}{7}-\frac{1}{103}\)

\(A=\frac{96}{721}\)

Vậy  \(A=\frac{96}{721}\)

\(B=\frac{2}{7.10}+\frac{2}{10.13}+...+\frac{2}{100.103}\)

\(B=\frac{2}{3}.\left(\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\right)\)

\(B=\frac{2}{3}.\left(\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{2}{3}.\left(\frac{1}{7}-\frac{1}{103}\right)\)

\(B=\frac{2}{3}.\frac{96}{721}\)

\(B=\frac{64}{721}\)

Vậy  \(B=\frac{64}{721}\)

_Chúc bạn học tốt_