Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
1)
Đkxđ \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
Khi đó A=\(\frac{\sqrt{3}-1-1}{\sqrt{3}-1+1}=\frac{\sqrt{3}-2}{\sqrt{3}}\)
2) Đề là \(5-2\sqrt{6}\)sẽ hợp lý hơn nha bn
Đkxđ\(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-\sqrt{2}\ne0\end{matrix}\right.\)
Ta có \(5-2\sqrt{6}=\left(1-\sqrt{6}\right)^2\)
Khi đó
B= \(\frac{1-\sqrt{6}}{1-\sqrt{6}-\sqrt{2}}\)
1)
đk: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Rgọn
A=\(\frac{x+12}{x-4}+\frac{1}{\sqrt{x}+2}-\frac{4}{\sqrt{x}-2}\)
= \(\frac{x+12+\sqrt{x}-2-\left(4\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
2)
B=\(\frac{3\sqrt{x}-1}{\sqrt{x}+2}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{10\sqrt{x}}{x-4}\) đk \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
= \(\frac{\left(3\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+10\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
= \(\frac{3x-5\sqrt{x}-2-\left(x+3\sqrt{x}+2\right)+10\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{3x-5\sqrt{x}-2-x-3\sqrt{x}-2+10\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{2x+2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{\left(2x+2\sqrt{x}\right)-\left(4\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{2\sqrt{x}\left(\sqrt{x}+2\right)-4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{\left(\sqrt{x}+2\right)2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=2\)
Chúc bn học tốt
Nhớ tích cho mk nhé
Bài 1:
a) Để căn thức \(\sqrt{\frac{2}{9-x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\frac{2}{9-x}\ge0\\9-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9-x>0\\x\ne9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 9\\x\ne9\end{matrix}\right.\Leftrightarrow x< 9\)
b) Ta có: \(x^2+2x+1\)
\(=\left(x+1\right)^2\)
mà \(\left(x+1\right)^2\ge0\forall x\)
nên \(x^2+2x+1\ge0\forall x\)
Do đó: Căn thức \(\sqrt{x^2+2x+1}\) xác được với mọi x
c) Để căn thức \(\sqrt{x^2-4x}\) có nghĩa thì \(x^2-4x\ge0\)
\(\Leftrightarrow x\left(x-4\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x-4\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x< 0\end{matrix}\right.\)
Bài 3:
a) Ta có: \(\sqrt{\left(3-\sqrt{10}\right)^2}\)
\(=\left|3-\sqrt{10}\right|\)
\(=\sqrt{10}-3\)(Vì \(3< \sqrt{10}\))
b) Ta có: \(\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=\left|\sqrt{5}-2\right|\)
\(=\sqrt{5}-2\)(Vì \(\sqrt{5}>2\))
c) Ta có: \(3x-\sqrt{x^2-2x+1}\)
\(=3x-\sqrt{\left(x-1\right)^2}\)
\(=3x-\left|x-1\right|\)
\(=\left[{}\begin{matrix}3x-\left(x-1\right)\left(x\ge1\right)\\3x-\left(1-x\right)\left(x< 1\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}3x-x+1\\3x-1+x\end{matrix}\right.=\left[{}\begin{matrix}2x+1\\4x-1\end{matrix}\right.\)
a, x = \(\frac{4\left(\sqrt{3}+1\right)}{3-1}-\frac{4\left(\sqrt{3}-1\right)}{3-1}\)
x = \(\left(2\sqrt{3}+2\right)-\left(2\sqrt{3}-2\right)\)
x = \(2\sqrt{3}+2-2\sqrt{3}+2\)
x = 4 (TMĐK)
=> A = \(\frac{2\sqrt{4}+1}{3\sqrt{4}+1}\)
=> A = \(\frac{5}{7}\)
Vậy x = \(\frac{4}{\sqrt{3}-1}-\frac{4}{\sqrt{3}+1}\) thì A = \(\frac{5}{7}\)
b, B = \(\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)
B = \(\frac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{1}{\sqrt{x}-1}\)
B = \(\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
c, \(\frac{B}{A}>2\) <=> \(\frac{2\sqrt{x}+1}{\sqrt{x}+1}:\frac{2\sqrt{x}+1}{3\sqrt{x}+1}\) > 2
<=> \(\frac{3\sqrt{x}+1}{\sqrt{x}+1}>2\)
<=> \(\frac{3\sqrt{x}+1}{\sqrt{x}+1}-2>0\)
<=> \(\frac{3\sqrt{x}+1-2\sqrt{x}-2}{\sqrt{x}+1}>0\)
<=> \(\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)
mà \(\sqrt{x}+1>0\) \(\forall\) \(x\in\) ĐKXĐ
=> \(\sqrt{x}-1>0\)
<=> \(\sqrt{x}>1\)
<=> \(x>1\)
Kết hợp ĐKXĐ : x \(\ge0\) ; x \(\ne\) 1
=> x > 1 thì \(\frac{B}{A}>2\)
nếu trong biểu thức thì viết như này , còn trình bày thì anh kid đã làm rồi
a, \(đk:x>2\)
b, \(đk:x\ge0;x\ne9\)
a)
Các biểu thức sau có nghĩa khi \(\frac{1}{x^2-4}>0;x^2-4\ne0\Rightarrow x>2\)
b)
Biểu thức có nghĩa khi \(x\ge0;x\ne9\)