Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
Ta xét 3 khoảng giá trị:
+) Nếu \(x\le0\)thì \(x^8\ge x^5;x^2\ge x\)(dễ thấy)
\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)
\(\Rightarrow f\left(x\right)\ge1>0\)
Ở khoảng này f(x) vô nghiệm.
+) Nếu \(0< x< 1\)
Ta có: \(f\left(x\right)=1-\left[x^5-x^8+x-x^2\right]\)
\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]\)
Vì 0 < x < 1 nên \(x^5,1-x^3>0\)
Áp dụng bđt Cauchy, ta được:
\(\sqrt{x^5\left(1-x^3\right)}\le\frac{x^5+1-x^3}{2}\)
\(\Rightarrow x^5\left(1-x^3\right)\le\left(\frac{x^5+1-x^3}{2}\right)^2\)
Tương tự ta có: \(x\left(1-x\right)\le\left(\frac{x+1-x}{2}\right)^2=\frac{1}{4}\)
Lúc đó \(x^5\left(1-x^3\right)+x\left(1-x\right)\le\left(\frac{1-\left(x^3-x^5\right)}{2}\right)^2+\frac{1}{4}\)
\(< \frac{1}{4}+\frac{1}{4}=\frac{1}{2}< 1\)(do x3 > x5 vì 0 < x < 1)
\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]>0\)
Ở khoảng này đa thức cũng vô nghiệm.
+) Nếu \(x\ge0\)thì \(x^8\ge x^5;x^2\ge x\)
\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)
\(\Rightarrow f\left(x\right)\ge1>0\)
Ở khoảng này đa thức cũng vô nghiệm.
Vậy đa thức f(x) vô nghiệm
e)ta có E=\(\frac{-16}{81}+x^4\)=0 => \(x^4=\frac{16}{81}\)=> x=2/3 và -2/3 TƯƠNG TỰ NHÉ
a,Ta có:
\(f\left(-1\right)=0\)
\(\Leftrightarrow m.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1=0\)
\(\Leftrightarrow m.\left(-1\right)+1-1+1=0\)
\(\Leftrightarrow-m+1=0\)
\(\Leftrightarrow-m=-1\)
\(\Leftrightarrow m=1\)
Vậy \(m=1\)thì đa thức có nghiệm là -1
b,Ta có:
\(g\left(1\right)=0\)
\(\Leftrightarrow1^4+m^2.1^3+m.1^2+m.1-1=0\)
\(\Leftrightarrow1+m^2+m+m-1=0\)
\(\Leftrightarrow m^2+2m=0\)
\(\Leftrightarrow m.\left(m+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}m=0\\m=-2\end{cases}}\)
Vậy \(m=\left\{0,-2\right\}\)thì đa thức có nghiệm là 1
c, Ta có:
\(h\left(-3\right)=0\)
\(\Leftrightarrow\left(-3\right)^3-2.\left(-3\right)^2+m=0\)
\(\Leftrightarrow-27-2.9+m=0\)
\(\Leftrightarrow-27-18+m=0\)
\(\Leftrightarrow-45+m=0\)
\(\Leftrightarrow m=45\)
Vậy \(m=45\)thì đa thức có nghiệm là -3
a) f(x) = m.x3 + x2 + x + 1
f(x) có nghiệm x = -1
=> f(-1) = m(-1)3 + (-1)2 + (-1) + 1 = 0
=> -m + 1 - 1 + 1 = 0
=> -m + 1 = 0
=> -m = -1
=> m = 1
Vậy với m = 1 , f(x) có nghiệm x = -1
b) g(x) = x4 + m2.x3 + m.x2 + m.x - 1
g(x) có nghiệm x = 1
=> g(1) = 14 + m2.13 + m.12 + m.1 - 1 = 0
=> 1 + m2 + m + m - 1 = 0
=> m2 + 2m = 0
=> m( m + 2 ) = 0
=> m = 0 hoặc m + 2 = 0
=> m = 0 hoặc m = -2
Vậy với m = 0 hoặc m = -2 , g(x) có nghiệm x = 1
c) h(x) = x3 - 2x2 + m
h(x) có nghiệm x = -3
=> h(-3) = (-3)3 - 2(-3)2 + m = 0
=> -27 - 18 + m = 0
=> -45 + m = 0
=> m = 45
Vậy với m = 45 , h(x) có nghiệm x = -3
Thay x = -1 vào đa thức f(x), ta có:
-1100 + (-1)75 + (-1)50 + (-1)25 + (-1) + 1
= 1 - 1 + 1 - 1 - 1 + 1
= 0
Vậy x = -1 là nghiệm của f(x)
b) Bạn làm tương tự nhé!
KT cần nhớ: x2k \(\ge\) 0 \(\forall x\) và x2k+1\(\le\) 0 (x < 0)
cảm ơn bạn nha