Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
BD=CE
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: AB=AC
hay ΔABC cân tại A
b: XétΔABC có
AD là đường cao
CH là đường cao
AD cắt CH tại D
Do đó: D là trực tâm của ΔABC
=>BD vuông góc với AC
Trả lời:
a, Vì ^xAm và ^xAB là 2 góc kề bù
=> ^xAm + ^xAB = 180o
=> 75o + ^xAB = 180o
=> ^xAB = 180o - 75o
=> ^xAB = 105o
Ta có: ^xAB = ^yBA = 105o
Mà 2 góc này ở vị trí so le trong
nên Ax // By (đpcm)
b, Ta có: ^yBC + ^yBA + ^ABC = 360o
=> ^yBC + 105o + 90o = 360o
=> ^yBC = 360o - 105o - 90o
=> ^yBC = 165o
Ta có: ^yBC = ^BCz = 165o
Mà 2 góc này ở vị trí so se trong
nên By // Cz (đpcm)
c, Ta có: Ax // By và By // Cz
=> Ax // Cz (vì cùng song song với By) (đpcm)
B E D F C A 50 40 140 H
Kéo dài AB, AB và FC cắt nhau tại H
Vì AB vuông với AC nên BAC = 90 độ
Ta có: BAC + CAH = 180 độ( kề bù)
=> 90 + CAH = 180
=> CAH = 180 - 90
=> CAH = 90
Áp dụng tính chất tổng 3 góc của 1 tam giác ta có:
HAC + ACH + AHC = 180
=> 90 + 40 + AHC = 180
=> 130 + AHC = 180
=> AHC = 180 - 130
= 50
Suy ra góc AHC = EAB = 50 độ
mà 2 góc này ở vị trí so le trong
=> EB // FC → ĐPCM
Bài 9:
a) Gọi 3 phần cần tìm lần lượt là a,b,c
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}\) = \(\frac{b}{3}\) = \(\frac{c}{5}\) = \(\frac{a+b+c}{2+3+5}\) = \(\frac{6200}{10}\) = 620
\(\Rightarrow\) \(\left[\begin{array}{nghiempt}a=620.2\\b=620.3\\c=620.5\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}a=1240\\b=1860\\c=3100\end{array}\right.\)
Vậy 3 phần cần tìm lần lượt là 1240 ; 1860 ; 3100
b) Gọi 3 phần cần tìm lần lượt là a, b,c
Vì a , b ,c tỉ lệ nghịch với 2 ; 3 ; 5 nên ta có:
a . 2 = b . 3 = c . 5 và a + b + c = 6200
Có: \(\frac{a}{\frac{1}{2}}\) = \(\frac{b}{\frac{1}{3}}\) = \(\frac{c}{\frac{1}{5}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{\frac{1}{2}}\) = \(\frac{b}{\frac{1}{3}}\) = \(\frac{c}{\frac{1}{5}}\) = \(\frac{a+b+c}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}\) = \(\frac{6200}{\frac{31}{30}}\) = 6200 . \(\frac{30}{31}\) = 6000
\(\Rightarrow\) \(\left[\begin{array}{nghiempt}a=6000.\frac{1}{2}\\b=6000.\frac{1}{3}\\c=6000.\frac{1}{5}\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}a=3000\\b=2000\\c=1200\end{array}\right.\)
Vậy 3 phần cần tìm lần lượt là 3000 ; 2000 ; 1200
Bài 10.
a) Vì y tỉ lệ tuận với x nên ta có công thức:
y = kx hay 8 = k6
=> k = \(\frac{8}{6}\) = \(\frac{4}{3}\)
Biểu diễn y theo x : y = \(\frac{4}{3}\) . x
b) Khi x = 9 thì y = \(\frac{4}{3}\) . 9 = 12
c) Khi y = - 4:
Ta có: - 4 = \(\frac{4}{3}\) . x
=> x = -4 : \(\frac{4}{3}\) = -4 . \(\frac{-3}{4}\) = -3
Bài 11.
a) Vì x và y tỉ lệ nghịch với nhau nên ta có công thức:
x . y = a hay 4 . (-15) = -60
Biểu diễn y theo x: y = \(\frac{-60}{x}\)
b) Khi x = 6 thì y = \(\frac{-60}{6}\) = -10
Khi x = -12 thì y = \(\frac{-60}{-12}\) = 5
c)
+) Khi y = -2
Ta có công thức: -2 = \(\frac{-60}{x}\)
=> x = \(\frac{-60}{-2}\) = 30
+) Khi y = 30
Tương tự ta có: x = \(\frac{-60}{30}\) = -2
3. Xét tam giác ADM và tam giác AEM có :
góc ADM = góc AEM = 90 độ
Góc BAM = góc CAM (gt)
AM chung
=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)
=>MD = ME (cặp cạnh t/ứng )
AD = AE (cặp cạnh t/ứng )
Xét tam giác MDB và tam giác MEC có :
MB = MC (gt)
góc MDB = góc MEC = 90 độ
MD = ME ( câu a)
=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)
Vì AD + DB = AB
AE + EC = AC
Mà AD = AE
DB = EC
=>AB = AC
Xét tam giác ABM và tam giác ACM có
AM chung
góc BAM = góc CAM (gt)
AB = AC (CMT)
=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)
Vậy có 3 cặp tam giác bằng nhau