Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=1+2+2^2+...+2^{10}\)
\(=>2C=2+2^2+...+2^{11}\)
\(=>C=2^{11}-1\)
\(=>2C=2^{12}-2\)
\(=>2C+2=2^{12}\)
vậy 2C+2 là lũy thừa của 2
cái này minh chỉ giải dc câu 1 thôi nhé.
bấm máy tính CASIO FX-570 ES/VN PLUS.
quy trình ấn phím:
SHIFT -> LOG(dưới nút ON) -> 2 -> X^*(bên cạnh dấu căn) -> ALPHA -> X -> bấm phím xuống -> 1 -> bấm phím lên -> 20.
bấm dấu bằng.
ta có kết quả là 2097150.
vậy số tận cùng là 0.
a, Ta có : 2016 chia hết cho 4 mà lũy thừa
=> \(1944^{2016}\)có chữ số tận cùng giông với : \(4^{2016}=............6\)( vì lũy thừ có cơ số 4 và số mũ la số chia hết cho 4 thì chữ số tận cùng của lũy thừa đó luôn là 6 )
Vậy chữ số tận cùng của \(1944^{2016}\)là 6
b, Ta có \(1944^{2016}\)chia hết cho 4 ( Vì 1944 chia hết cho 4 ) và \(1944^{2016}=324^{2016}.6^{2016}\)
mà : 324 đồng dư với -1 (mod 25 )
=> \(324^{2016}\)đồng dư với \(\left(-1\right)^{2016}\)đồng dư với 1 ( mod 25 )
và : \(6^{2016}\)\(=6^{2015}.6\)
Ta có : \(6^{2015}=\left(6^5\right)^{403}\)\(=7776^{403}\)
Có : 7776 đồng dư với 1 ( mod 25 )
=> \(7776^{403}\)đồng dư với \(1^{403}\)đồng dư với 1 ( mod 25 )
Có : 6 đồng dư với 6 ( mod 25 )
=> \(1944^{2016}\)đồng dư với \(324^{2016}.6^{2015}.6\)đồng dư với 1.1.6 đồng dư với 6 ( mod 25 )
=> \(1944^{2016}\)chia cho 25 dư 6
=>\(1944^{2016}\)= 25.k + 6 chia hết cho 4
Ta có : 25.k + 6 chia hết cho 4
24.k + k + 2 + 4 chia hết cho 4
=> k + 2 chia hết cho 4
=> k = 4.m - 2
Thay k = 4.m - 2 ta có :
\(1944^{2016}=\) 25. (4.m - 2 ) + 6
\(1944^{2016}=\)100 .m - 50 + 6
\(1944^{2016}=\)100.m - 44 = .........00 - 44
\(1944^{2016}=\)...........56
Vậy hai chữ số tận cùng của \(1944^{2016}=\)56
Ai thấy mik làm đúng thì ủng hộ nha !!!
Cảm ơn các bạn nhiều
1.Chữ số tận cùng của các số tự nhiên có tận cùng bằng 0;1;5;6 khi nâng lên lũy thừa:
Cho HS tính các lũy thừa sau ( Sử dụng máy tính)
Các số tự nhiên có chữ số tận cùng là 0;1;5;6 khi nâng lên lũy thừa bất kì( 0) thì giữ nguyên chữ số tận cùng của nó.
Ví dụ: Tìm chữ số tận cùng của các lũy thừa sau:
a) 156 7 ; b)1061 9
c) 156 7 + 1061 9 d) 156 7 . 1061 9
Giáo Viên hướng dẫn Học Sinh áp dụng tính chất trên:
a) 156 7 có chữ số tận cùng là 6
b) 1061 9 có chữ số tận cùng là 1
c) Theo câu a) và b) Chữ số tận cùng của lũy thừa :156 7 + 1061 9 là 7
Theo kết quả câu a) và b) Chữ số tận cùng của lũy thừa :156 7 .1061 9 là 6.
Các bài tập tương tự:
7130 ;b) 26 35 ; c) 86 33
d) 71 30 + 26 35; ;f)
g) 71 30 + 26 35 ; h ) 86 33 . 71 30 ; k) +
2.Chữ số tận cùng của các số tự nhiên có tận cùng là 2; 4;8 khi nâng lên lũy thừa 4n (n # 0) đều có chữ số tận cùng là 6
* Cho Học Sinh tính:
2 4 = …6 ; 2 8 = …6 ; 2 12 = …6
4 4 =…6 ; 4 8 = …6 ; 412 = …6
8 4 = …6; 8 8 = …6; 8 12 = …6
Các số tự nhiên có chữ số tận cùng bằng 2;4;8 khi nâng lên lũy thừa 4n ( n # 0) đều có chữ số tận cùng là 6
* Tương tự cho Học Sinh tính : ( Vận dụng chữ số tận cùng của một tích)
34 =…1 ; 38 = …1; 3 12 = …1
74 = …1; 78 = …1 ; 7 12 = …1
94 = …1 ; 9 8 = …1 ; 9 12 = …1
Các số tự nhiên có chữ số tận cùng là 3; 7; 9 nâng lên lũy thừa 4n (n # 0) có chữ số tận cùng là 1
* Chú ý:
Riêng đối với các số tự nhiên có chữ số tận cùng là 4 hoặc 9 :
+ Nếu nâng lên lũy thừa lẽ đều có chữ số tận cùng là chính nó
+ Nếu nâng lên lũy thừa chẵn thì có chữ số tận cùng là 6 và 1
Một số chính phương thì không có chữ số tận cùng là 2; 3; 7; 8
781 . 152018
781\(\equiv\)( mod 10 )
710\(\equiv\)9 ( mod 10 )
780\(\equiv\)1 ( mod 10 )
781\(\equiv\)7 ( mod 10 )
Vậy chữ số tận cùng của 781 là 1
152018\(\equiv\)( mod 10 )
158\(\equiv\)5 ( mod 10 )
1580\(\equiv\)5 ( mod 10 )
15960\(\equiv\)5 ( mod 10 )
151920\(\equiv\)5 ( mod 10 )
152000\(\equiv\)5 ( mod 10 )
152007\(\equiv\)5 ( mod 10 )
152014\(\equiv\)5 ( mod 10 )
152018\(\equiv\)5 ( mod 10 )
Vậy chữ số tận cùng của 152018 là 5
\(\Rightarrow\)Chữ số tận cùng của 781 . 152018 là 7 . 5 = 35
Vậy chữ số tận cùng của 781 . 152018 là 5
Hk tốt
22012 = (24)503 = 16503
các số có tận cùng bằng 6 khi luỹ thừa lên được số vẫn tận cùng bằng 6
vậy 22012 có tận cùng bằng 6