K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Bài 1: Trên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB. Tia phân giác của các góc xOy cắt AB ở C. Chứng minh rằng:
C là trung điểm của AB


Bài 2: Cho tam giác ABC có , M là trung điểm của AC. Trên tia đối của tia MB lấy điểm K sao cho MK = MB. Chứng minh rằng:
a) KC vuông góc với AC
b) AK // BC

Bài 3: Cho tam giác ABC, D là trung điểm của AC, E là trung điểm của AB. Trên tia đối của AB. Trên tia đối của tia DB lấy điểm N sao cho DN = DB. Trên tia đối của tia EC, lấy điểm M sao cho EM = EC. Chứng minh rằng A là trung điểm của MN.

Bài 4: Cho điểm A nằm trong góc nhọn xOy. Vẽ AH vuông góc với Ox, trên tia đối của tia HA lấy điểm B sao cho HB = HA. Vẽ AK vuông góc với Oy, trên tia đối của tia KA lấy điểm C sao cho KC = KA. Chứng minh rằng:
a) OB = OC.
b) Biết , tính .

Bài 5: Tam giác ABC có AC > AB, tia phân giác của góc A cắt BC ở D. Trên AC lấy điểm E sao cho AE = AB. Chứng minh rằng AD vuông góc với BE.

Bài 6: Cho m là đường trung trực của đoạn thẳng Ab, C là điểm thuộc m. Gọi Cx là tia đối của tia CA, Cn là tia phân giác của góc bCx. Chứng minh rằng Cn vuông góc với m.

Bài 7: Cho hai đoạn thẳng Ab và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng. Lấy các điểm E trên đoạn thẳng AD, F trên đoạn thẳng BC sao cho AE = BF. Chứng minh rằng ba điểm E, O, F thẳng hàng.

Bài 8: Cho đoạn thẳng AB. Vẽ về hai phía của Ab các đoạn thẳng AC và BD vuông góc với AB sao cho AC = BD. Chứng minh rằng .

Bài 9: Cho tam giác ABC, kẻ BD vuông góc với AC, kể CE vuông góc với AB. Trên tia đối của tia BD, lấy điểm H sao cho BH = AC. Trên tia đối của tia CE, lấy điểm K sao cho CK = AB. Chứng minh rằng Ah = Ak.

Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng không chứa B có bờ là AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE = AC. Chứng minh rằng:
a)
b)

Bài 11: Cho tam giác ABC có AB = AC. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chứng minh rằng:
a) BE = CD.
b)

Bài 12: Cho tam giác ABC có . Tia phân giác của góc B cắt AC ở D, tia phân giác của góc C cắt AB ở E. Các tia phân giác đó cắt nhau ở I. Chứng minh rằng ID = IE

Bài 13: Cho đoạn thẳng AB, O là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tia Ax và By vuông góc với AB. Gọi C là một điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By ở D. Chứng minh rằng CD = AC + BD.

Bài 14: Trên cạnh BC của một tam giác ABC, lấy các điểm E và F sao cho BE = CF. Qua E và F, vẽ các đường thẳng song song với BA, chúng cắt cạnh AC theo thứ tự ở G và H. Chứng minh rằng EG + FH = AB.

Bài 15: Cho tam giác ABC có , Ab = AC. Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BH và Ck vuông góc với d. Chứng minh rằng:
a) AH = CK.
b) HK = BH + CK

Bài 16: Cho tam giác ABC. Vẽ đoạn thẳng AD bằng AD bằng và AD bằng và vuông góc với AB (D và C nằm khác phía đối với AB). Vẽ đoạn thẳng AE bằng và vuông góc với AC (E và B nằm khác phía đối với AC). Vẽ AH vuông góc với BC. Đường thẳng HA cắt DE ở K. Chứng minh rằng DK = DE.

Bài 17: Cho tam giác ABC cân tại A có , kẻ BD vuông góc với AC. Trên cạnh AB lấy điểm E sao cho AE = AD. Chứng minh rằng:
a) DE // BC
b) CE AB
Bài 18: Trên cạnh huyền BC của tam giác vuông ABC, lấy các điểm D và E sao cho BD = BA, CE = CA. Tính
Bài 19: Cho tam giác ABC, M là trung điểm của BC. Chứng minh rằng:
a) Nếu thì .
b) Nếu thì
c) Nếu thì

Bài 20: Tam giác ABC có . Trên tia đối của tia AC lấy D sao cho AD = AB. Tính theo a.

Bài 21: Cho điểm M thuộc đoạn thẳng AB. Trên cùng một nửa mạt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, CB. Chứng minh rằng tam giác MEF là tam giác đều.

Bài 22: Cho tam giác ABC cân tại A, , BC = 6cm. Đường vuông góc với AB tại A cắt BC ở D. Tính độ dài của BD.

Bài 23: Cho tam giác ABC có . Trên tia phân giác của góc A, lấy điểm E sao cho AE = AB + AC. Chứng minh rằng tam giác BCE là tam giác đều.

Bài 23: Ở miền trong góc nhọn xOy, vẽ tia Oz sao cho . Qua điểm A thuộc tia Oy, vẽ AH vuông với Ox, cắt Oz ở B. Trên tia Bz lấy điểm D sao cho BD = OA. Chứng minh rằng tam giác AOD là tam giác cân.

Bài 24: Cho , Oy là tia phân giác của , Ot là tia phân giác của góc xOy, M là điểm thuộc miền trong của góc yOz. Vẽ MA Ox, vẽ MB Oy, vẽ MC Ot. Tính độ dài OC theo Ma và MB.

Bài 25: Cho tam giác ABC cân tại A, . Trên nửa mặt phẳng bờ BC chứa điểm A, kẻ tia Cx sao cho . Gọi D là giao điểm của các tia Cx và Ba. Chứng minh rằng AD = BC.

Bài 26: Cho tam giác ABC có các góc nhọn nhỏ hơn . Vẽ ở phía ngoài tam giác ABC các tam giác đều ABD, ACE. Gọi M là giao điểm của DC và BE. Chứng minh rằng:
a) =
b) =

Bài 27: Cho tam giác cân ABC có . Gọi K là điểm trong tam giác sao cho . Chứng minh rằng tam giác ABK là tam giác cân và tính số đo góc BAK.

Bài 28: Cho tam giác ABC vuông tại A có AC = 3AB. Trên AC lấy các điểm D và E sao cho AD = DE = EC. Chứng minh rằng .

Bài 29: Cho tam giác cân ABC có , tia phân giác của góc B cắt AC ở D. Chứng minh rằng BC = BD + AD.

Bài 30: Tam giác ABC vuông tại A có BC = 26cm, AB : AC = 5: 12. Tính các độ dài AB, AC.

Bài 31: Tam giác ABC có AB = 16cm, AC = 14cm, . Độ dài BC bằng mấy ?

Bài 32: Cho các số: 5,9,12,13,15,16,20. Hãy chọn ra các bộ ba số là độ dài ba cạnh của một tam giác vuông.

Bài 33: Vẽ về một phía của đoạn thẳng AB = 5cm các tia Ax, By vuông góc với AB. Trên tia Ax lấy điểm D sao cho AD = 5cm. Trên tia By lấy điểm E sao cho BE = 1cm. Trên đoạn thẳng AB lấy điểm C sao cho Ac = 2cm. Góc DCE có là góc vuông hay không?

Bài 34: Cho tam giác ABC cân tại A, . Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE. Chứng minh rằng AK là tia phân giác của góc A.

Bài 35: Cho tam giác ABC có M là trung điểm của BC và AM là tia phân giác của góc A. Chứng minh rằng tam giác ABC là tam giác cân.

Bài 36: Cho ABC vuông cân tại A. Một đường thẳng d bất kì qua A. Kẻ Bh và Ck vuông góc với đường thẳng d. Chứng minh rằng tổn có giá trị không đổi.

Bài 37: Cho tam giác Abc vuông tại A (AB > AC). Tia phân giác của góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB. Đường thẳng vuông góc với AE tại E cắt tia DH ở K. Chứng minh rằng:
a) BA = BH
b)
Chúc các bạn luôn thành công trong học tập & sự nghiệp

28 tháng 6 2017

kì thực hình học lớp 7 cũng ko quá khó như bn nghũ đâu . Lúc đầu mk cx giống bn tưởng hình rất khó nhưng nếu trên lớp bn chú ý nghe kĩ thầy cô giáo giảng , về nhà học lại là ok . Bn mua sách Nâng cao và phát triển Toán 7 có rất nhìu bài toán hay , bổ ích

27 tháng 12 2019

https://taimienphi.vn/download-70-bai-tap-toan-nang-cao-lop-7-37125

link này

#Châu's ngốc

28 tháng 1 2016

Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99

Lời giải:

Cách 1:

B = 1 + (2 + 3 + 4 + ... + 98 + 99).

Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:

(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949

Khi đó B = 1 + 4949 = 4950

Lời bình: Tổng B gồm 99 số hạng, nếu ta chia các số hạng đó thành cặp (mỗi cặp có 2 số hạng thì được 49 cặp và dư 1 số hạng, cặp thứ 49 thì gồm 2 số hạng nào? Số hạng dư là bao nhiêu?), đến đây học sinh sẽ bị vướng mắc.

Ta có thể tính tổng B theo cách khác như sau:

Cách 2:

 

Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999

Lời giải:

Cách 1:

Từ 1 đến 1000 có 500 số chẵn và 500 số lẻ nên tổng trên có 500 số lẻ. Áp dụng các bài trên ta có C = (1 + 999) + (3 + 997) + ... + (499 + 501) = 1000.250 = 250.000 (Tổng trên có 250 cặp số)

Cách 2: Ta thấy:

1= 2.1 - 1

3 = 2.2 - 1

5 = 2.3 - 1

...

999 = 2.500 - 1

Quan sát vế phải, thừa số thứ 2 theo thứ tự từ trên xuống dưới ta có thể xác định được số các số hạng của dãy số C là 500 số hạng.

Áp dụng cách 2 của bài trên ta có:

 

Bài 3. Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998

Nhận xét: Các số hạng của tổng D đều là các số chẵn, áp dụng cách làm của bài tập 3 để tìm số các số hạng của tổng D như sau:

Ta thấy:

10 = 2.4 + 2

12 = 2.5 + 2

14 = 2.6 + 2

...

998 = 2 .498 + 2

Tương tự bài trên: từ 4 đến 498 có 495 số nên ta có số các số hạng của D là 495, mặt khác ta lại thấy:  495 = (998 - 10)/2 + 1 hay số các số hạng = (số hạng đầu - số hạng cuối) : khoảng cách rồi cộng thêm 1

Khi đó ta có:

 D = 10 + 12 = ... + 996 + 998
+D = 998 + 996  ... + 12 + 10
 
 2D = 1008  1008 + ... + 1008 + 1008

2D = 1008.495 → D = 504.495 = 249480

Thực chất  D = (998 + 10).495 / 2

Qua các ví dụ trên, ta rút ra một cách tổng quát như sau: Cho dãy số cách đều u1, u2, u3, ... un (*), khoảng cách giữa hai số hạng liên tiếp của dãy là d.

Khi đó số các số hạng của dãy (*) là: 

Tổng các số hạng của dãy (*) là: 

Đặc biệt từ công thức (1) ta có thể tính được số hạng thứ n của dãy (*) là: un = u1 + (n - 1)d
Hoặc khi u1 = d = 1 thì 

tick nha

28 tháng 1 2016

em mới học lớp 6

17 tháng 9 2017

Mở sách nâng cao và phát triển toán 7 ra tìm

Ở trong sách đấy có nhiều dạng toán đa dạng và nâng cao lắm

22 tháng 10 2021

undefined

Vừa vẽ xong,vẽ nó hơi sến ak ! Thì mong bn thông cảm!

22 tháng 10 2021

Ồ, chữ giông giống mik

27 tháng 10 2016

học kỳ 1 à

 

8 tháng 10 2017

Gọi số hoa điểm tốt của mỗi bạn lần lượt là x,y,z

Theo đề bài ta có: \(\frac{x}{6}=\frac{y}{7}=\frac{z}{8}\) và -x + y + z = 36

Theo tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{6}=\frac{y}{7}=\frac{z}{8}=\frac{-x+y+z}{-6+7+8}=\frac{36}{9}=4\)

=> x/6 = 4 => x = 24

y/7 = 4 => y = 28

z/8 = 4 => z = 32

Vậy...

8 tháng 10 2017

Ban oi cho minh hoi tai sao lai la am x vay?