K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2021

\(=\frac{\left(x+1\right)\left(x+2\right)\left(x-5\right)\left(x+5\right)}{\left(x+2\right)\left(x+5\right)}=\left(x+1\right)\left(x-5\right)=x^2-4x-5\)

7 tháng 3 2020

\(ĐKXĐ:x\ne-1;x\ne\frac{2}{3}\)

\(pt\Leftrightarrow\frac{7x-2\left(x+1\right)+\left(3x-2\right)}{\left(3x-2\right)\left(x+1\right)}=1\)

\(\Leftrightarrow7x-2\left(x+1\right)+\left(3x-2\right)=\left(3x-2\right)\left(x+1\right)\)

\(\Leftrightarrow8x-4=3x^2-2x+3x-2\)

\(\Leftrightarrow3x^2-7x+2=0\)

\(\Delta=7^2-4.3.2=25,\sqrt{\Delta}=5\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7+5}{6}=2\\x=\frac{7-5}{6}=\frac{1}{3}\end{cases}}\)

Tự cho đkxđ nha!!!

<=> \(\frac{x+1-x}{x+1}=\frac{7x}{\left(3x-2\right)\left(x+1\right)}-\frac{2}{3x-2}\)

<=> \(\frac{3x-2}{\left(3x-2\right)\left(x+1\right)}=\frac{7x}{\left(3x-2\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(3x-2\right)\left(x+1\right)}\)

<=> \(\frac{7x-2x-2-3x+2}{\left(3x-2\right)\left(x+1\right)}=0\)

<=> \(\frac{2x}{\left(3x-2\right)\left(x+1\right)}=0\)

=> 2x = 0

<=> x = 0 (TM)

Vậy ...

11 tháng 7 2017

\(\left(\frac{9}{x.x^2-9.x}+\frac{1}{x+_{ }3}\right):\left(\frac{x-3}{x.3+x^2}-\frac{x}{3.x+9}\right)\) đk (x\(\ne\)o; công trừ 3)

<=>\(9+\frac{x.\left(x-3\right)}{x.\left(x^2-9\right)}\):\(\frac{3.\left(x-3\right)-x^2}{3x.\left(x+3\right)}\)

<=>\(-\frac{3}{x-3}=\frac{3}{3-x}\)

12 tháng 7 2017

Bạn ơi mk k hiểu sao lại ra bước 2 ... bạn giải chi tiết giùm mk nha

dù sao cx cảm ơn bạn đã giúp mk

15 tháng 3 2020

i) (x - 1)(5x + 3) = (3x - 8)(x - 1)

<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8

<=> 5x2 - 2x - 3 = 3x2 - 11x + 8

<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0

<=> 2x2 + 9x - 11 = 0

<=> 2x2 + 11x - 2x - 11 = 0

<=> x(2x + 11) - (2x + 11) = 0

<=> (x - 1)(2x + 11) = 0

<=> x - 1 = 0 hoặc 2x + 11 = 0

<=> x = 0 hoặc x = -11/2

m) 2x(x - 1) = x2 - 1

<=> 2x2 - 2x = x2 - 1

<=> 2x2 - 2x - x2 + 1 = 0

<=> x2 - 2x + 1 = 0

<=> (x - 1)2 = 0

<=> x - 1 = 0

<=> x = 1

n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)

<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x

<=> -31x + 22 - 3x2 = 16x - 15x2 - 4

<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0

<=> 47x - 18 - 12x2 = 0

<=> -12x2 + 47x - 26 = 0

<=> 12x2 - 47x + 26 = 0

<=> 12x2 - 8x - 39x + 26 = 0

<=> 4x(3x - 2) - 13(3x - 2) = 0

<=> (4x - 13)(3x - 2) = 0

<=> 4x - 13 = 0 hoặc 3x - 2 = 0

<=> x = 13/4 hoặc x = 2/3

15 tháng 3 2020

i) (x - 1)(5x + 3) = (3x - 8)(x - 1)

<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8

<=> 5x2 - 2x - 3 = 3x2 - 11x + 8

<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0

<=> 2x2 + 9x - 11 = 0

<=> 2x2 + 11x - 2x - 11 = 0

<=> x(2x + 11) - (2x + 11) = 0

<=> (x - 1)(2x + 11) = 0

<=> x - 1 = 0 hoặc 2x + 11 = 0

<=> x = 0 hoặc x = -11/2

m) 2x(x - 1) = x2 - 1

<=> 2x2 - 2x = x2 - 1

<=> 2x2 - 2x - x2 + 1 = 0

<=> x2 - 2x + 1 = 0

<=> (x - 1)2 = 0

<=> x - 1 = 0

<=> x = 1

n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)

<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x

<=> -31x + 22 - 3x2 = 16x - 15x2 - 4

<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0

<=> 47x - 18 - 12x2 = 0

<=> -12x2 + 47x - 26 = 0

<=> 12x2 - 47x + 26 = 0

<=> 12x2 - 8x - 39x + 26 = 0

<=> 4x(3x - 2) - 13(3x - 2) = 0

<=> (4x - 13)(3x - 2) = 0

<=> 4x - 13 = 0 hoặc 3x - 2 = 0

<=> x = 13/4 hoặc x = 2/3

16 tháng 3 2020

câu 1

a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)

b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)

Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được

\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)

16 tháng 3 2020

c) Để phân thức trên có giá trị nguyên thì :

\(3⋮x-2\)

=>\(x-2\inƯ\left(3\right)=\left(\pm1\pm3\right)\)

=>\(x\in\left\{1,3,-1,5\right\}\)

zậy ....

21 tháng 6 2017

b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18

4x 2 -4x+1-4x 2+25=18

26-4x=18

4x=8

x=2

21 tháng 6 2017

a,27x-18=2x-3x^2

<=> 3x^2-2x+27-18x=0

<=> 3x^2-20x+27=0

\(\Delta\)= 20^2-4-12.27

tính \(\Delta\)rồi tìm x1 ,x2

19 tháng 12 2016

a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)

\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)

\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)

\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a-b}{b+c}\)

19 tháng 12 2016

Sửa lại: \(\frac{a-c}{b+c}\)