Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
Dấu "=" xảy ra khi \(x=y=z\)
Hoặc:
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2\left(y+z\right)}{4\left(y+z\right)}}=x\)
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\) ; \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)
Cộng vế với vế ta có đpcm
Ta có: \(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\)
Áp dụng BĐT Cauchy Schwarz, ta có:
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
=> ĐPCM
Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{\sqrt{3}}\)
Áp dụng BĐT Cosi cho 2 số dương, ta có:
\(\frac{9x^3}{y+2z}+x\left(y+2z\right)\ge6x^2;\frac{9y^3}{z+2x}+y\left(z+2x\right)\ge6y^2;\frac{9z^3}{x+2y}+z\left(x+2y\right)\ge6z^3\)
Lại có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)
Do đó \(\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}+3\left(xy+yz+zx\right)\ge6\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}\ge6\left(x^2+y^2+z^2\right)-3\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{\sqrt{3}}\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
$\frac{x^3}{(y+2z)^2}+\frac{y+2z}{27}+\frac{y+2z}{27}\geq 3\sqrt[3]{\frac{x^3}{(y+2z)^2}.\frac{y+2z}{27}.\frac{y+2z}{27}}=\frac{x}{3}$
$\frac{y^3}{(z+2x)^2}+\frac{z+2x}{27}+\frac{z+2x}{27}\geq \frac{y}{3}$
$\frac{z^3}{(x+2y)^2}+\frac{x+2y}{27}+\frac{x+2y}{27}\geq \frac{z}{3}$
Cộng theo vế các BĐT trên và thu gọn thì:
$\sum \frac{x^3}{(y+2z)^2}+\frac{x+y+z}{9}\geq \frac{x+y+z}{3}$
$\Rightarrow \sum \frac{x^3}{(y+2z)^2}\geq \frac{2}{9}(x+y+z)$ (đpcm)
Dấu "=" xảy ra khi $x=y=z$
ngu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườichó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó ngu
im mồm