K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

Bài 5:

a: \(\left(x+3\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2-9-x^2-3x+10=6\)

\(\Leftrightarrow-3x=5\)

hay \(x=-\dfrac{5}{3}\)

Gọi E là giao điểm của AC và BD.

∆ECD có ∠C1 = ∠D1 (do ∠ACD = ∠BDC) nên là tam giác cân.

Suy ra EC = ED        (1)

Tương tự ∆EAB cân tại A  suy ra: EA = EB      (2)

Từ (1) và (2) ta có: EA + EC = EB + ED ⇒ AC = BD

Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.4

20 tháng 8 2020

-3x4y + 6x3y - 3x2y

= -3x2y( x2 - 2x + 1 )

= -3x2y( x - 1 )2

20 tháng 8 2020

-3x4y+6x3y-3x2y

=-3x2y(x2-2xy+1)

=-3x2y(x-1)2

26 tháng 11 2018

Sửa lại đề : \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)

Ta có : \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)   \(=\) \(\frac{2x^2+3xy+y^2}{\left(x-y\right)\left(2x^2+3xy+y^2\right)}\)

                                                          \(=\frac{1}{x-y}\)      ( Chia cả tử và mẫu cho \(2x^2+3xy+y^2\))

                

                                                        

Ta có : |x - 2| ; |x - 5| ; |x - 18| ≥0∀x∈R≥0∀x∈R

=> |x - 2| + |x - 5| + |x - 18|  ≥0∀x∈R≥0∀x∈R

=> D có giá trị nhỏ nhất khi x = 2;5;18

Mà x ko thể đồng thời nhận 3 giá trị

Nên GTNN của D là : 16 khi x = 5   ok nha bạn

x^2/x-1 = x^2-4x+4/x-1 + 4 = (x-2)^1/x-1 + 4 >= 4

Dấu "=" xảy ra <=> x-2 = 0 <=> x = 2 (tm)

Vậy GTNN của x^2/x-1 = 4 <=> x= 2

k mk nha