
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu 8:
a:Sửa đề: \(4+4^2+\cdots+4^{2025}\)
Ta có: \(4+4^2+\cdots+4^{2025}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+\cdots+\left(4^{2023}+4^{2024}+4^{2025}\right)\)
\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+\cdots+4^{2023}\left(1+4+4^2\right)\)
\(=21\left(4+4^4+\cdots+4^{2023}\right)\) ⋮21
b: \(5+5^2+5^3+5^4+\cdots+5^{2024}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{2023}+5^{2024}\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+\cdots+5^{2022}\left(5+5^2\right)\)
\(=30\left(1+5^2+\cdots+5^{2022}\right)\) ⋮30
Câu 7:
a: \(A=2+2^2+2^3+\cdots+2^{99}\)
=>\(2A=2^2+2^3+\cdots+2^{100}\)
=>\(2A-A=2^2+2^3+\cdots+2^{100}-2-2^2-\cdots-2^{99}\)
=>\(A=2^{100}-2\)
b: \(B=1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)
=>\(7B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}\)
=>\(7B+B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}+1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)
=>\(8B=-7^{50}+1\)
=>\(B=\frac{-7^{50}+1}{8}\)
Câu 4:
a: \(x^3=125\)
=>\(x^3=5^3\)
=>x=5
b: \(11^{x+1}=121\)
=>\(11^{x+1}=11^2\)
=>x+1=2
=>x=2-1=1
c: \(\left(x-5\right)^3=27\)
=>\(\left(x-5\right)^3=3^3\)
=>x-5=3
=>x=3+5=8
d: \(4^5:4^{x}=16\)
=>\(4^{x}=4^5:16=4^5:4^2=4^3\)
=>x=3
e: \(5^{x-1}\cdot8=1000\)
=>\(5^{x-1}=1000:8=125=5^3\)
=>x-1=3
=>x=3+1=4
f: \(2^{x}+2^{x+3}=72\)
=>\(2^{x}+2^{x}\cdot8=72\)
=>\(2^{x}\cdot9=72\)
=>\(2^{x}=\frac{72}{9}=8=2^3\)
=>x=3
g: \(\left(3x+1\right)^3=343\)
=>\(\left(3x+1\right)^3=7^3\)
=>3x+1=7
=>3x=6
=>x=2
h: \(3^{x}+3^{x+2}=270\)
=>\(3^{x}+3^{x}\cdot9=270\)
=>\(10\cdot3^{x}=270\)
=>\(3^{x}=\frac{270}{10}=27=3^3\)
=>x=3
i: \(25^{2x+4}=125^{x+3}\)
=>\(\left(5^2\right)^{2x+4}=\left(5^3\right)^{x+3}\)
=>\(5^{4x+8}=5^{3x+9}\)
=>4x+8=3x+9
=>x=1
Câu 6:
1 giờ=3600 giây
Số tế bào hồng cầu được tạo ra sau mỗi giờ là:
\(25\cdot10^5\cdot3600=25\cdot36\cdot10^7=900\cdot10^7=9\cdot10^9\) =9 tỉ (tế bào)

Bài 3:
4; 45 + 5\(x\) = 10\(^3\): 10
45 + 5\(x\) = 100
5\(x\) = 100 - 45
5\(x\) = 55
\(x\) = 55 : 5
\(x\) = 11
Vậy \(x=11\)
5; 4\(x\) - 20 = 2\(^5\) : 2\(^2\)
4\(x\) - 20 = 2\(^3\)
4\(x\) = 8 + 20
4\(x\) = 28
\(x\) = 28 : 4
\(x=7\)
Vậy \(x=7\)

c: \(\left(x-1\right)^3=\left(-9\right)^3\)
=>x-1=-9
=>x=-9+1=-8
f: \(3x-2^3=7+\left(-9\right)\)
=>3x-8=7-9=-2
=>3x=-2+8=6
=>x=2

Olm chào em, khi em muốn đổi quà thì em đổi qua hệ thống. Olm không có chương trình nào là đổi 50 xu lấy quà có giá trị lớn cả. Với lại đổi quà thì phải đổi qua hệ thống chứ sao lại chuyển cho một người vô danh trên Olm được. Em cho cô xin link để cô khóa tài khoản của người này lại. Cảm ơn em

Bài 8:
a: \(5^3=125;3^5=243\)
mà 125<243
nên \(5^3<3^5\)
b: \(7\cdot2^{13}<8\cdot2^{13}=2^3\cdot2^{13}=2^{16}\)
c: \(27^5=\left(3^3\right)^5=3^{3\cdot5}=3^{15}\)
\(243^3=\left(3^5\right)^3=3^{5\cdot3}=3^{15}\)
Do đó: \(27^5=243^5\)
d: \(625^5=\left(5^4\right)^5=5^{4\cdot5}=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{3\cdot7}=5^{21}\)
mà 20<21
nên \(625^5<125^7\)
Bài 9:
a: \(3^{x}\cdot5=135\)
=>\(3^{x}=\frac{135}{5}=27=3^3\)
=>x=3(nhận)
b: \(\left(x-3\right)^3=\left(x-3\right)^2\)
=>\(\left(x-3\right)^3-\left(x-3\right)^2=0\)
=>\(\left(x-3\right)^2\cdot\left\lbrack\left(x-3\right)-1\right\rbrack=0\)
=>\(\left(x-3\right)^2\cdot\left(x-4\right)=0\)
=>\(\left[\begin{array}{l}x-3=0\\ x-4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\left(nhận\right)\\ x=4\left(nhận\right)\end{array}\right.\)
c: \(\left(2x-1\right)^4=81\)
=>\(\left[\begin{array}{l}2x-1=3\\ 2x-1=-3\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=4\\ 2x=-2\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(nhận\right)\\ x=-1\left(loại\right)\end{array}\right.\)
d: \(\left(5x+1\right)^2=3^2\cdot5+76\)
=>\(\left(5x+1\right)^2=9\cdot5+76=45+76=121\)
=>\(\left[\begin{array}{l}5x+1=11\\ 5x+1=-11\end{array}\right.\Rightarrow\left[\begin{array}{l}5x=10\\ 5x=-12\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(nhận\right)\\ x=-\frac{12}{5}\left(loại\right)\end{array}\right.\)
e: \(5+2^{x-3}=29-\left\lbrack4^2-\left(3^2-1\right)\right\rbrack\)
=>\(2^{x-3}+5=29-\left\lbrack16-9+1\right\rbrack\)
=>\(2^{x-3}+5=29-8=21\)
=>\(2^{x-3}=16=2^4\)
=>x-3=4
=>x=4+3=7(nhận)
f: \(3+2^{x-1}=24-\left\lbrack4^2-\left(2^2-1\right)\right\rbrack\)
=>\(2^{x-1}+3=24-\left\lbrack16-4+1\right\rbrack=24-13=11\)
=>\(2^{x-1}=11-3=8=2^3\)
=>x-1=3
=>x=4(nhận)
Bài 6:
a: \(5\cdot5\cdot5\cdot5\cdot5\cdot5=5^6\)
b: \(27\cdot14\cdot7\cdot2=27\cdot14\cdot14=3^3\cdot14^2\)
c: \(x\cdot x\cdot x\cdot y=x^3\cdot y\)
d: \(5^3\cdot5^4=5^{3+4}=5^7\)
e: \(7^8:7^2=7^{8-2}=7^6\)
f: \(42^7:6^7\cdot49=7^7\cdot49=7^7\cdot7^2=7^{7+2}=7^9\)

Giải:
Từ trang 1 đến trang 9 số các số có 1 chữ số là:
(9 - 1) : 1 + 1 = 9
Từ trang 10 đến trang 99 số các số có 2 chữ số là:
(99 - 10) : 1+ 1 = 90 (số)
Từ trang 100 đến trang 220 số các số có 3 chữ số là:
(220 - 100) : 1 + 1 = 121(số)
Để đánh số trang quyển sách dày 220 trang thì cần số chữ số là:
1 x 9 + 2 x 90 + 3 x 121 = 552 (chữ số)
Kết luận: Đánh cuốn sách dày 220 trang cần 552 chữ số.
Số chữ số cần dùng để đánh số cho trang từ 1 đến 9 là:
\(\left(9-1+1\right)\cdot1=9\cdot1=9\) (chữ số)
Số chữ số cần dùng để đánh số cho trang từ 10 đến 99 là:
\(\left(99-10+1\right)\cdot2=90\cdot2=180\) (chữ số)
Số chữ số cần dùng để đánh số cho trang từ 100 đến 220 là:
\(\left(220-100+1\right)\cdot3=121\cdot3=363\) (chữ số)
Tổng số chữ số cần dùng là:
363+9+180=552(chữ số)

bài 14:
\(a.\left(x-1\right)\cdot100=0\)
\(x-1=0\Rightarrow x=1\)
\(b.200-11x=24\)
\(11x=200-24\)
\(11x=176\)
\(x=\frac{176}{11}=16\)
\(c.165:\left(2x+1\right)=15\) (đkxđ: x khác \(-\frac12)\)
\(2x+1=\frac{165}{15}=11\)
\(2x=11-1=10\)
\(x=\frac{10}{2}=5\)
\(d.375:\left(45-4x\right)=15\) (đkxđ: \(x\ne\frac{45}{4})\)
\(45-4x=\frac{375}{15}=25\)
\(4x=45-25=20\)
\(x=20:4=5\)
bài 15:
giá tiền 125 chiếc điện thoại là:
125 x 2350000=293750000 (đồng)
giá tiền 250 chiếc máy tính bảng là:
250 x 4950000 = 1237500000 (đồng)
tổng số tiền mà cửa hàng phải trả cho số điện thoại và máy tính trên là:
293750000 + 1237500000 = 1531250000 (đồng)
đáp số: 1531250000 đồng
bài 16: từ năm 2022 đến năm 2025 có năm 2024 là năm nhuận
số ngày từ năm 2022 đến năm 2025 là:
365 x 4 + 1 = 1461 (ngày)
1461 : 7 = 208 dư 5
3 + 5 = 8 (chủ nhật)
vậy vào 9/3/2025 , sẽ rơi vào ngày chủ nhật trong tuần

bài 14:
\(a.\left(x-1\right)\cdot100=0\)
\(x-1=0\Rightarrow x=1\)
\(b.200-11x=24\)
\(11x=200-24\)
\(11x=176\)
\(x=\frac{176}{11}=16\)
\(c.165:\left(2x+1\right)=15\) (đkxđ: x khác \(-\frac12)\)
\(2x+1=\frac{165}{15}=11\)
\(2x=11-1=10\)
\(x=\frac{10}{2}=5\)
\(d.375:\left(45-4x\right)=15\) (đkxđ: \(x\ne\frac{45}{4})\)
\(45-4x=\frac{375}{15}=25\)
\(4x=45-25=20\)
\(x=20:4=5\)
bài 15:
giá tiền 125 chiếc điện thoại là:
125 x 2350000=293750000 (đồng)
giá tiền 250 chiếc máy tính bảng là:
250 x 4950000 = 1237500000 (đồng)
tổng số tiền mà cửa hàng phải trả cho số điện thoại và máy tính trên là:
293750000 + 1237500000 = 1531250000 (đồng)
đáp số: 1531250000 đồng

Bài 5:
a: \(37\cdot146+46\cdot2-46\cdot37\)
\(=37\left(146-46\right)+46\cdot2\)
\(=37\cdot100+92=3700+92=3792\)
b: \(2\cdot5\cdot71+5\cdot18\cdot2+10\cdot11\)
\(=10\cdot71+10\cdot18+10\cdot11\)
\(=10\left(71+18+11\right)=10\cdot100=1000\)
c: \(135+360+65+40\)
=135+65+360+40
=200+400
=600
d: \(27\cdot75+25\cdot27-450\)
\(=27\left(75+25\right)-450\)
=2700-450
=2250
Bài 4:
a: \(32\cdot163+32\cdot837\)
\(=32\cdot\left(163+837\right)\)
\(=32\cdot1000=32000\)
b: \(2\cdot3\cdot4\cdot5\cdot25=2\cdot5\cdot4\cdot25\cdot3=3\cdot10\cdot100=3000\)
c: \(25\cdot27\cdot4=27\cdot100=2700\)
Bài 3:
a: \(128\cdot19+128\cdot41+128\cdot40\)
\(=128\cdot\left(19+41+40\right)=128\cdot100=12800\)
b: \(375+693+625+307\)
=375+625+693+307
=1000+1000
=2000
c: \(37+42-37+22\)
=37-37+42+22
=0+64
=64
d: \(21\cdot32+21\cdot68\)
\(=21\cdot\left(32+68\right)=21\cdot100=2100\)
Bài 2:
a: \(17\cdot85+15\cdot17-120\)
\(=17\left(85+15\right)-120\)
=1700-120
=1580
b: \(189+73+211+127\)
=189+211+73+127
=400+200
=600
c: \(38\cdot73+27\cdot38\)
\(=38\left(73+27\right)=38\cdot100=3800\)
Bài 1:
a: \(28\cdot76+23\cdot28-28\cdot13\)
\(=28\left(76+23-13\right)=28\cdot86=2408\)
b: \(39\cdot50+25\cdot39+75\cdot61\)
\(=39\left(50+25\right)+75\cdot61\)
\(=39\cdot75+75\cdot61=75\left(39+61\right)=75\cdot100=7500\)
c: \(32\cdot163+837\cdot32\)
\(=32\left(163+837\right)=32\cdot1000=32000\)
d: \(63+118+37+82\)
=63+37+118+82
=100+200
=300
Câu 8:
a:Sửa đề: \(4+4^2+\cdots+4^{2025}\)
Ta có: \(4+4^2+\cdots+4^{2025}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+\cdots+\left(4^{2023}+4^{2024}+4^{2025}\right)\)
\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+\cdots+4^{2023}\left(1+4+4^2\right)\)
\(=21\left(4+4^4+\cdots+4^{2023}\right)\) ⋮21
b: \(5+5^2+5^3+5^4+\cdots+5^{2024}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{2023}+5^{2024}\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+\cdots+5^{2022}\left(5+5^2\right)\)
\(=30\left(1+5^2+\cdots+5^{2022}\right)\) ⋮30
Câu 7:
a: \(A=2+2^2+2^3+\cdots+2^{99}\)
=>\(2A=2^2+2^3+\cdots+2^{100}\)
=>\(2A-A=2^2+2^3+\cdots+2^{100}-2-2^2-\cdots-2^{99}\)
=>\(A=2^{100}-2\)
b: \(B=1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)
=>\(7B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}\)
=>\(7B+B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}+1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)
=>\(8B=-7^{50}+1\)
=>\(B=\frac{-7^{50}+1}{8}\)
Câu 7
a) \(A=2+2^2+2^3+\ldots+2^{99}\).
Đây là cấp số nhân từ \(2^{1}\) đến \(2^{99}\). Tổng:
\(A = \sum_{k = 1}^{99} 2^{k} = \frac{2 \left(\right. 2^{99} - 1 \left.\right)}{2 - 1} = 2 \left(\right. 2^{99} - 1 \left.\right) = 2^{100} - 2.\)
b) \(B=1-7+7^2-7^3+\ldots+7^{48}-7^{49}\).
Đây là tổng các \(7^{k}\) với dấu luân phiên, tức là tổng cấp số nhân với tỉ số \(r = - 7\), từ \(k = 0\) đến \(k = 49\):
\(B = \sum_{k = 0}^{49} \left(\right. - 1 \left.\right)^{k} 7^{k} = \sum_{k = 0}^{49} \left(\right. - 7 \left.\right)^{k} = \frac{1 - \left(\right. - 7 \left.\right)^{50}}{1 - \left(\right. - 7 \left.\right)} = \frac{1 - 7^{50}}{8} .\)
(Đó là dạng rút gọn chính xác.)
Câu 8
a) Dạng đề: \(1+4+4^2+4^3+\ldots+4^{2025}\) chia hết cho \(21\) ?
Hãy xét chu kỳ của \(4^{n}\) theo mod \(21\). Ta có
\(4^{1} \equiv 4 , 4^{2} \equiv 16 , 4^{3} = 64 \equiv 1 \left(\right. m o d 21 \left.\right) ,\)
vậy \(4^{3} \equiv 1 \left(\right. m o d 21 \left.\right)\) — nghĩa là dãy lũy thừa của 4 theo mod 21 có chu kỳ 3. Tổng mỗi nhóm ba số liên tiếp
\(4^{0} + 4^{1} + 4^{2} = 1 + 4 + 16 = 21 \equiv 0 \left(\right. m o d 21 \left.\right) .\)
Tập các số từ \(4^{0}\) đến \(4^{2025}\) có \(2026\) số. Vì \(2026 = 3 \cdot 675 + 1\), nên ta có \(675\) nhóm 3 (mỗi nhóm tổng chia hết cho 21) và dư một số là \(4^{2025}\). Do \(2025\) chia hết cho \(3\), ta có \(4^{2025} \equiv 4^{0} \equiv 1 \left(\right. m o d 21 \left.\right)\).
Vậy tổng toàn bộ hợp lại
\(\equiv 675 \cdot 0 + 1 \equiv 1 \left(\right. m o d 21 \left.\right) ,\)
không chia hết cho \(21\).
Kết luận: Như đề bài viết (tới \(4^{2025}\)), tổng không chia hết cho \(21\).
(Có lẽ đề thực tế muốn mũ cuối là \(2024\) thay vì \(2025\); khi mũ cuối là \(2024\) thì có \(2025\) số, tức \(2025 = 3 \cdot 675\) nhóm đầy đủ nên tổng sẽ chia hết cho \(21\).)
b) Dạng đề: \(5 + 5^{2} + 5^{3} + \hdots + 5^{2024}\) chia hết cho \(30\) ?
Gọi \(S = \sum_{k = 1}^{2024} 5^{k}\). Ta kiểm tra chia hết cho \(2 , 3 , 5\) (vì \(30 = 2 \cdot 3 \cdot 5\)):
Từ đó \(S\) chia hết cho \(2 , 3 , 5\) đồng thời, nên chia hết cho \(30\).