Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)
\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ac-ab}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)
CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}=\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)
Vì sao bước thứ 2 từ dưới lên lại có thể suy ra (a−b)(b−c)(a−c)/(a−b)(b−c)(a−c)=1?
(1) #Toán lớp 8
(1)
#Toán lớp 8
Tham khảo:
Cho a≠b≠c, a+b≠c và c2+2ab-2ac-2bc=0 Hãy rút gọn \(B=\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\) - Hoc24
\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\dfrac{a^2+a^2-2ac+c^2}{b^2+b^2-2bc+c^2}\)
\(=\dfrac{2a^2-2ac+c^2}{2b^2-2bc+c^2}\)
VT = (a+b+c)^2
= [(a+b) + c]^2
= (a+b)^2 + 2(a+b)c + c^2
= a^2 + 2ab + b^2 + 2ac + 2bc + c^2
= a^2 + b^2 + c^2 + 2ab + 2ac + 2bc = VP
Vậy ...
---------------------------------------
VT= (a+b+c)^2 + a^2 + b^2 + c^2
= [(a+b) + c]^2 + a^2 + b^2 + c^2
= (a+b)^2 + 2(a+b)c + c^2 + a^2 + b^2 + c^2
= a^2 + 2ab + b^2 + 2ac + 2bc + c^2 + a^2 + b^2 + c^2
= (a^2 + 2ab + b^2) + (b^2 + 2bc + c^2) + (c^2 + 2ca + a^2)
= (a+b)^2 + (b+c)^2 + (c+a)^2 = VP
Vậy...
( a + b + c ) 2 = a ( a + b + c ) + b ( a + b + c ) + c ( a + b + c )
= a2 + ab + ac + ab + b2 + bc + ac + bc + c2
= a2 + b2 + c2 + 2ab + 2ac + 2bc