Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3n-2⋮2n+1\)
\(\Leftrightarrow2.\left(3n-2\right)⋮2n+1\)
\(\Leftrightarrow6n-4⋮2n+1\)
\(\Leftrightarrow3\left(2n+1\right)-7⋮2n+1\)
Mà \(3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow7⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Làm nốt
-11 là bội của n-1
=> -11 chia hết cho n-1
=> n-1 thuộc Ư(-11)
n-1 | n |
1 | 2 |
-1 | 0 |
11 | 12 |
-11 | -10 |
KL: n thuộc......................
d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2\right\}\)
hay \(n\in\left\{0;-1\right\}\)
Mk trả lời mỗi câu khó nha!!!
d*) \(\dfrac{n+1}{2n+1}\in Z\)
Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(n+1⋮2n+1\)
\(\Rightarrow2.\left(n+1\right)⋮2n+1\)
\(\Rightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
2n+1 | -1 | 1 |
n | -1 | 0 |
Vậy \(n\in\left\{-1;0\right\}\)
(3n - 1) ⋮ (2n - 1)
⇒ 2(3n - 1) ⋮ (2n - 1)
⇒ (6n - 2) ⋮ (2n - 1)
⇒ (6n - 3 + 1) ⋮ (2n - 1)
⇒ [3(2n - 1) + 1] ⋮ (2n - 1)
⇒ 1 ⋮ (2n - 1)
⇒ 2n - 1 ∈ Ư(1) = {-1; 1}
⇒ 2n ∈ {0; 2}
⇒ n ∈ {0; 1}
3n - 1 ⋮ 2n - 1
2(3n-1) ⋮ 2n-1
3(2n-1)+1⋮ (2n-1)
1 ⋮ (2n-1)
(2n- 1 ) \(\in\) \(\)Ư(1) = \(\left\{-1;1\right\}\)
2n-1 | -1 | 1 |
n | 0 | 1 |
Theo bảng trên ta có
n ϵ { 0:1}
UCLN =d
(2n+1) &(3n-1) chia het cho d
3(2n+1) chia het d
2(3n-1) chia het cho d
3(2n+1)-2(3n-1) chia het cho d
6n+3-6n+2 chia het cho d
5 chia het cho d
d lon nhat => d=5
\(\Leftrightarrow2\left(3n-5\right)⋮2n+1\)
\(\Leftrightarrow6n-10⋮2n+1\)
\(\Leftrightarrow6n+3-13⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;13;-13\right\}\)
hay \(n\in\left\{0;-1;6;-7\right\}\)