Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A chỉ có giá trị lớn nhất khi |x+1|=0
\(\Rightarrow\)x = -1
ta có : A =\(\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)=\(\frac{15\left|-1+1\right|+32}{6\left|-1+1\right|+8}\)=\(\frac{15.0+32}{6.0+8}\)=\(\frac{32}{8}\)=4
Vậy giá trị lớn nhất của A là 4
Các dạng bài này thường bạn đặt ẩn rồi giải ra kiểu như này
Giả sử các phân số cần tìm có dạng \(\frac{7}{a}\)(a là số nguyên)
Theo đề bài thì ta có \(\frac{-5}{9}< \frac{a}{7}< \frac{1}{3}\)
Quy đồng tử số ta được \(\frac{-35}{63}< \frac{9a}{63}< \frac{21}{63}\)
\(\Rightarrow-35< 9a< 21\Leftrightarrow-3< a< 2\)(cái này là tại mình đang lấy a nguyên)
Vậy các phân số thỏa mãn đề bài là \(\left(\frac{-2}{7};\frac{-1}{7};0;\frac{1}{7}\right)\)
Đặt tổng các phân số trên bằng S, ta có S=\(\frac{-2}{7}+\frac{-1}{7}+0+\frac{1}{7}=\frac{-2}{7}< 0\)
Mặt khác dễ thấy Tích các phân số trên bằng 0
Vậy tổng các phân số thỏa mãn đề bài nhỏ hơn tích của chúng
\(\text{Gọi các p/s cần tìm là }\frac{x}{7}\)
\(\text{Theo đề bài ta có: }\frac{-5}{9}< \frac{x}{7}< \frac{1}{3}\)
\(\Rightarrow\frac{-35}{63}< \frac{9x}{63}< \frac{21}{63}\)
\(\Rightarrow-35< 9x< 21\)
\(\text{Mà 9x phải chia hết cho 9}\)
\(\text{Do đó: }9x\in\left\{-27;-18;-9;9;18\right\}\)
\(\Rightarrow x\in\left\{-3;-2;-1;1;2\right\}\)
\(\Rightarrow\frac{x}{7}\in\left\{\frac{-3}{7};\frac{-2}{7};\frac{-1}{7};\frac{1}{7};\frac{2}{7}\right\}\)
\(\text{Tổng các phân số là: }\frac{-3}{7}+\frac{-2}{7}+\frac{-1}{7}+\frac{1}{7}+\frac{2}{7}=\frac{-3-2-1+1+2}{7}=\frac{-3}{7}\)
\(\text{Tích các phân số là: }\frac{-3}{7}\times\frac{-2}{7}\times\frac{-1}{7}\times\frac{1}{7}\times\frac{2}{7}=\frac{\left(-3\right)\times\left(-2\right)\times\left(-1\right)\times1\times2}{7\times7\times7\times7\times7}\)
\(=\frac{-12}{16807}\)
\(a,\frac{x+8}{3}+\frac{x+7}{2}=-\frac{x}{5}\)
\(\Leftrightarrow\frac{10\cdot\left(x+8\right)}{30}+\frac{15\left(x+7\right)}{30}=\frac{-6x}{30}\)
\(\rightarrow10x+80+15x+105=-6x\)
\(\Leftrightarrow31x+185=0\)
\(\Leftrightarrow x=-\frac{185}{31}\)
b,\(b,\frac{x-8}{3}+\frac{x-7}{4}=4+\frac{1-x}{5}\)
\(\Leftrightarrow\frac{20\left(x-8\right)}{60}+\frac{15\left(x-7\right)}{60}=\frac{240}{60}+\frac{12\left(1-x\right)}{60}\)
\(\rightarrow20x-160+15x-105=240+12-12x\)
\(\Leftrightarrow47x-517=0\)\(\Leftrightarrow x=11\)
Bài 1:
Giải:
Ta có: \(\frac{1+3y}{12}=\frac{1+7y}{4x}=\frac{1+1+3y+7y}{12+4x}=\frac{2+10y}{2\left(6+2x\right)}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}=\frac{1+5y}{5x}\)
+) Xét \(1+5y=0\Rightarrow y=\frac{-1}{5}\Rightarrow1+5y=0\) ( loại )
+) Xét \(1+5y\ne0\Rightarrow6+2x=5x\)
\(\Rightarrow5x-2x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Mà \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{10}\)
\(\Rightarrow10\left(1+3y\right)=12\left(1+5y\right)\)
\(\Rightarrow10+30y=12+60y\)
\(\Rightarrow10-12=60y-30y\)
\(\Rightarrow-2=30y\)
\(\Rightarrow y=\frac{-1}{15}\)
Vậy \(x=2,y=\frac{-1}{15}\)
Ta có số nguyên âm lớn nhất là -1 => y = -1
Thay x = \(\frac{1}{2}\); y = -1 vào biểu thức, ta có:
\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\)= \(\frac{\left(\frac{1}{2}\right)^3-3\left(\frac{1}{2}\right)^2+0,25\left(\frac{1}{2}\right)\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)= \(\frac{\frac{1}{8}-3.\frac{1}{4}+\frac{1}{4}-4}{\frac{1}{4}-1}\)
= \(\frac{\frac{1}{8}-1-4}{\frac{-3}{4}}\)= \(\frac{\frac{-7}{8}+\frac{1}{4}-4}{\frac{-3}{4}}\)= \(\frac{\frac{-7+2-32}{8}}{\frac{-3}{4}}\)= \(\frac{\frac{-37}{8}}{\frac{-3}{4}}\)= \(\frac{-37}{8}\left(\frac{-4}{3}\right)\)= \(\frac{37}{6}\)
Vậy khi x = \(\frac{1}{2}\)và y là số nguyên âm lớn nhất thì A có giá trị là \(\frac{37}{6}\)
Ta có: \(S=\left(1.2\right)^2+\left(2.2\right)^2+\left(3.2\right)^2+...+\left(10.2\right)^2\)
\(\Rightarrow S=1.2^2+2^2.2^2+3^2.2^2+..+10^2.2^2\)
\(\Rightarrow S=2^2\left(1+2^2+3^2+..+10^2\right)\)
\(\Rightarrow S=4.385=1540\)
ta có : S=\(\left(2.1\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+..+\left(2.10\right)^2\)
=\(2^2\left(1^2+2^2+3^2+...+10^2\right)\)
=4.385 =1540