Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 6.6 trang 19 Sách Bài Tập SBT Toán lớp 7 tập 1
Tính M=820+420425+645M=820+420425+645.
Giải
M=820+420425+645=(23)20+(22)20(22)25+(26)5M=820+420425+645=(23)20+(22)20(22)25+(26)5
=260+240250+230=240(220+1)230(220+1)=210=1024.=260+240250+230=240(220+1)230(220+1)=210=1024.
Câu 6.7 trang 19 Sách Bài Tập SBT Toán lớp 7 tập 1
Tìm x, biết:
a) (x4)2=x12x5(x≠0);(x4)2=x12x5(x≠0);
b) x10 = 25x8.
Giải
a) (x4)2=x12x5(x≠0)⇒x8=x7(x4)2=x12x5(x≠0)⇒x8=x7
⇒x8−x7=0⇒x7.(x−1)=0⇒x8−x7=0⇒x7.(x−1)=0
⇒x−1=0⇒x−1=0 (vì x7 ≠ 0)
Vậy x = 1.
b) x10=25x8⇒x10−25x8=0⇒x8.(x2−25)=0x10=25x8⇒x10−25x8=0⇒x8.(x2−25)=0
Suy ra x8 = 0 hoặc x2 - 25 = 0.
Do đó x = 0 hoặc x = 5 hoặc x = -5.
Vậy x∈{0;5;−5}x∈{0;5;−5}.
Câu 6.8 trang 19 Sách Bài Tập SBT Toán lớp 7 tập 1
Tìm x, biết:
a) (2x+3)2=9121(2x+3)2=9121;
b) (3x−1)3=−827(3x−1)3=−827
Giải
a) (2x+3)2=9121=(±311)2(2x+3)2=9121=(±311)2
Nếu 2x+3=311⇒x=−15112x+3=311⇒x=−1511
Nếu 2x+3=−311⇒x=−18112x+3=−311⇒x=−1811
b) (3x−1)3=−827=(−23)3(3x−1)3=−827=(−23)3
⇔3x−1=−23⇔x=19
Giải:
∆AHB và ∆KBH có
AH=KH ( gt )
=
BH cạnh chung .
Nên ∆AHB=∆KBH(c.g.c)
Suy ra: =
Vậy BH là tia phân giác của góc B.
Tương tự ∆AHC =∆KHC ( c . g . c )
Suy ra: =
Vậy CH là tia phân giác của góc C
p/s: Very làm biếng open sách so copy mạng =]]]
Đề bài: Vẽ tam giác ABC biết ∠A = 900; AB = AC = 3cm. Sau đó đo các góc ∠B và ∠C.
Bài giải: Cách vẽ:
– Vẽ góc ∠xAy = 900
– Trên tia Ax vẽ đoạn thẳng AB = 3cm,
– Trên tia Ay vẽ đoạn thẳng AC = 3cm,
– Vẽ đoạn BC.
Ta vẽ được đoạn thẳng BC.
Ta đo các góc B và C ta được ∠B = ∠C = 450
Đề bài: Trên mỗi hình 82,83,84 sau có các tam giác nào bằng nhau? Vì sao?
Bài giải:
Hình 82:
∆ADB và ∆ADE có: AB = AE (gt)
∠A1b= ∠A2 , AD chung.
Nên ∆ADB = ∆ADE(c.g.c)
Hình 83:
∆HGK và ∆IKG có:
HG = IK (gt)
∠G = ∠K (gt)
GK là cạnh chung (gt)
nên ∆HGK = ∆IKG( c.g.c)
Hình 84:
∆PMQ và ∆PMN có: MP cạnh chung
∠M1 = ∠M2
Nhưng MN không bằng MQ. Nên PMQ không bằng PMN.
Sử dụng tính chất : nếu a , b , c \(\in\) Z và a < b thì a + c < b - c . Từ đó
=> \(\frac{a}{m}< \frac{a+b}{2m}\) ( chia 2 vế cho m > 0 )
Vậy x < z ( 1 )
- Ta chứng minh z < y hay \(\frac{a+b}{2m}< \frac{b}{m}\)
Ta có : am < bm => am + bm < bm + bm ( cộng hai vế với bm )
=> ( a + b )m < 2bm
=> a + b < 2b ( chia 2 vế cho m )
=> \(\frac{a+b}{2m}< \frac{2b}{2m}=\frac{b}{m}\) ( chia 2 vế cho 2m )
Hay z < y ( 2 )
Từ ( 1 ) và ( 2 ) => x < z < y
* Nhận xét : từ kết quả trên ta rút ra kết luận : trên trục số , giữa 2 điểm hữu tỉ khác nhau bất kì bao giờ cũng có ít nhất một điểm hữu tỉ nữa và do đó có vô số điểm hữu tỉ . Ta bảo tập hợp Q là tập trù mật.
Ban Hoa giải đúng. Hưng làm nhầm công thức